# Combinations of Weighted First and Second-order Clockwise CP Modes To Improve Image Homogeneity with a 16-Channel Head Array at 7 Tesla

## K. Kim<sup>1</sup>, T. Herrmann<sup>1</sup>, J. Mallow<sup>1</sup>, Z-H. Cho<sup>2</sup>, and J. Bernarding<sup>1</sup>

<sup>1</sup>Department of Biometry and Medical Informatics, OvG University Magdeburg, Magdeburg, Saxony-Anhalt, Germany, <sup>2</sup>Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Korea, Republic of

#### INTRODUCTION

Standing wave effects inside the object at ultra-high field create inhomogeneous  $B_1^+$  field distributions that cause strong signal fluctuations in the resulting image. Recently, several methods using parallel transmit (pTx) systems [1] and variable transmit array coil configurations [2] were proposed to mitigate  $B_1^+$  inhomogeneity acting as an RF-shimming method [3]. More recently, in order to access different circularly polarized (CP) modes sequentially, Butler matrix [4] networks were used for the excitation of the available phase modes of the RF coil arrays. However, not all modes are of the same importance since the  $CP_1^+$  mode (first-order clockwise CP) as the dominant mode is always necessary to get a homogeneous image. Remaining anti-CP modes are less important for acquiring homogeneous images. In this work, selected combinations of weighted  $CP_1^+$  and  $CP_2^+$  mode are proposed to reduce  $B_1^+$  field inhomogeneity. A designed 16-ch. transmit head-array coil was connected to a 16x16 Butler Matrix network using an 8-channel pTx system for excitation of a coil array in a 7T system.

#### MATERIALS AND METHODS

The experiments were performed on a Siemens 7T whole-body system (Magnetom 7T, Siemens Healthcare, Erlangen, Germany) equipped with 8 transmit (8 × 1 kW peak RF power) and 32 receive channels. A 16-channel transmit array (dia. 27cm, length 15cm) was constructed with lumped element components. Adjacent elements were capacitively decoupled. The 16 ch. head-array was driven by the 16x16 Butler Matrix network [4], which was connected to the outputs of the 8x8 Butler Matrix used as a variable power combiner with an 8 ch. pTx system for acquiring several clockwise CP modes [5]. For the comparison of the  $B_1^{\ +}$  homogeneity distribution,  $B_1^{\ +}$  mapping sequences were applied to acquire gradient recalled echo images (GRE, TR=100, TE=10,  $\alpha$ =25°) for several clockwise CP modes. A spherical sugar/water mix phantom (dia. 17 cm,  $\epsilon_r$  =45.20,  $\sigma$  = 0.87: Water 38.05%, Sugar 56.05%, Salt 5.9%) was chosen as the permittivity ( $\epsilon_r$ ) and conductivity ( $\sigma$ ) a comparable to the human brain tissue.

#### RESULTS

Spatial-dependent flip angle (FA) maps using sugar phantom were measured from the CP<sup>+</sup><sub>1</sub> to the CP<sup>+</sup><sub>8</sub>. To compare the B<sub>1</sub><sup>+</sup> field homogeneity on the central axial GRE slice along the left-right (L-R) direction, the one dimensional signal intensity (SI) profiles for several modes of the top row of Fig. 2 are shown in Fig. 1. The CP<sub>1</sub><sup>+</sup> mode has a higher homogeneity in the entire image compared to the other modes despite of some variance across the center of the image with lower SI. Especially the CP<sup>+</sup><sub>2</sub> mode has a lower B<sub>1</sub><sup>+</sup> SI in the central region as compare to the peripheral region. In Fig. 2, the GRE images according to different modes are shown in top row ranging from the  $\operatorname{CP}_{8}^{+}$  to the  $\operatorname{CP}_{8}^{+}$ . A good agreement was achieved between FA maps and GRE image for all modes. To estimate the optimized image combination CP+1 and CP+2 modes were added using different weighting factors. Some weighting combinations (CP+1: CP+2=  $0.9:0.1,\,0.8:0.2,\,0.7:0.3)$  were found to exhibit the most homogenous  $B_1^+$ fields for the designed 16-ch. transmit head-array. Within the combined images more than 40% of the B<sub>1</sub><sup>+</sup> field inhomogeneity was significantly decreased in the center region. In Fig. 3, GRE images of a water sphere phantom was compared using weighting factors of  $CP_1^+$ :  $CP_2^+$  = 0.5 : 0.5, 0.8 : 0.2. The image combination using 0.8  $CP_1^+$  and 0.2  $CP_2^+$  showed the best  $B_1^+$  field homogeneity compared to the other combinations.

## CONCLUSION

Different combinations of weighted  $\operatorname{CP}^+_1$  and  $\operatorname{CP}^+_2$  modes were analyzed. Compared to other combination as well as to the uniform birdcage mode the

best  $B_1^+$  field homogeneity was found by a combination using  $0.8 \text{ CP}^+_1$  and  $0.2 \text{ CP}^+_2$ . With this RF-shimming method combined with data post processing more homogeneous images can be achieved than using solely the pure  $CP^+_1$  mode in 7T.

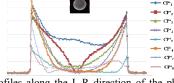
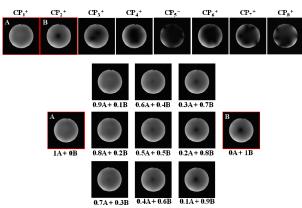
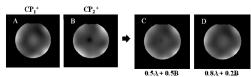





Fig 1: 1D Profiles along the L-R direction of the phantom's central GRE axial slice for several clockwise CP modes



**Fig 2**: GRE sugar/water phantom. **Top row**: images generated by  $CP_1^+$  mode and clockwise higher CP modes. **Remaining rows**: to estimate the optimal image combination, selected combinations of weighted  $CP_1^+$  mode (A) and  $CP_2^+$  mode (B) were generated.



**Fig 3**: The optimal combination based on weighted images (C / D = 0.5A + 0.5B / 0.8A + 0.2B) of GRE water sphere phantom images generated by  $CP_{1}^{+}$  mode (A) and  $CP_{2}^{+}$  mode (B).

#### REFERENCES

[1] Setsompop. K et al, Magn Reson.Med., 59, p. 908–915, 2008 [2] Reykowski, A. et al, Magn Reson.Med., 33, p. 848, 1995, [3] Caserta, J. et al, J. Magn Reson, 169, p. 187, 2004, [4] Yazdanbakhsh P., Solbach K. et al, Variable Power Combiner for a 7T Butler Matrix Coil Array, ISMRM 2009, [5] Yazdanbakhsh P., Solbach K. et al, 16-Bit Vector Modulator for B1 Shimming in 7T MRI, ISMRM 2009

## **ACKNOWLEDGEMENTS**

Thanks to Klaus Solbach, High Frequency Engineering, University Duisburg-Essen and the Erwin L. Hahn Institute, Essen, Germany, for provision performing measurements with the 8-channel RF shimming system. This work was supported by a grant of Saxony-Anhalt (Germany) (PJ-Nr. 507 support code: 3802208).