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Introduction: Small, alternating perturbations of parameters in a balanced SSFP (bSSFP)
sequence can cause large, highly localized deviations in the magnetization profile at specific
frequencies in the center of the passband. We show that these deviations correspond to
singularities in the steady-state signal equation, and we present mathematical and physical
explanations of this phenomenon. We demonstrate the phenomenon via Bloch simulations and
phantom imaging and discuss potential applications for positive-contrast imaging and fMRI.
This phenomenon was first investigated in the context of wideband SSFP [1], where it was
denoted “Central Signal Dip” and was caused by the perturbation of repetition times (TRs).
For simplicity, we present a theory and analysis of the central signal singularity for the case of
flip-angle perturbations. These techniques can be easily generalized to other parameters such
as RF phases or TRs.

Theory: If alternate flip angles of a bSSFP sequence are perturbed by Ao degrees, the
resulting magnetization profile has sharp notches and spikes in the odd and even TRs,
respectively (Fig. 1). Since the sequence repeats after two TRs, the steady-state magnetization
is MYS=(I—R)'1 b, where [ is the 3x3 identity matrix, R is a 3x3 matrix accounting for excitation,
precession, and relaxation during the two TRs, and b is a 3x1 vector accounting for relaxation.
The analysis can be simplified using the eigenvector decomposition of R: R=VAV"', which
yields My,=V(I-A)"'V"'b [2]. The steady-state magnetization can then be viewed as a weighted
sum of components directed along each eigenvector (v;), where the weights are elements of the
diagonal matrix (I-A)”". If one eigenvalue (say, ;) is closer to 1 than the others, then (7-4;)”
will dominate, causing M, to be directed parallel to the corresponding eigenvector. Since
TR<<T1,T2, R is close to a pure rotation matrix, having at least one eigenvalue that is near 1.
At most frequencies, only one eigenvalue of R is close to 1, and M,, smoothly “tracks” the
corresponding eigenvector (Fig. 1c). However, at integer multiples of 1/TR Hz, all three
eigenvalues are close to 1 (i.e., R=I), yielding a singularity in the expression for M,,. In the
absence of perturbations, R has one dominant eigenvalue at these frequencies, and M,
continues to smoothly track the corresponding eigenvector (Fig. 1c). If sequence parameters
are imbalanced (e.g., Aa=1°), then R has two dominant eigenvalues, and M, no longer tracks a
single eigenvector, resulting in signal perturbations at these critical frequencies (Fig. 1d).

To gain a physical understanding of the central signal singularity, we track the trajectory of
the magnetization vector for several different isochromats (Fig. 2). For Ao=1°, the steady-state
trajectory is tilted to account for this one-degree imbalance in nutation. At 60 Hz and 10 Hz,
small shifts of the trajectory in the x-y plane are sufficient to offset the perturbation, resulting
in little change in the transverse signal. However, at 0 Hz, the steady-state trajectory is
confined to the y-z plane, and a large rotation is necessary so that relaxation differences in
even and odd TRs offset the one-degree imbalance in nutation.

Results: A uniform spherical phantom was scanned with a linear field gradient to verify the
spectral profile of the perturbed bSSFP sequence. A 3D sequence was scanned with TR=4.6
ms, 0=60°, Ao=1°, FOV=24 cm, resolution=0.9x0.9x5 mm’. Interleaved acquisitions were
obtained during even and odd TRs, resulting in a scan time of 1:53s. Cross-sectional profiles
of the even- and odd-TR images closely match theory. These acquisitions can be subtracted to
yield a profile with sharp peaks centered at integer multiples of 1/TR Hz and broad stopbands
in between (Fig. 3).

Discussion: We have explained the central signal singularity phenomenon using linear
systems theory and have shown that deviations in the profile correspond to singularities in the
signal equation. Additionally, we provided a physical explanation of the phenomenon by
analyzing the steady-state magnetization trajectories of different isochromats. Finally, we
showed that the complex difference profile exhibits sharp peaks and broad stopbands. This
complex difference technique has numerous potential applications. (1) The spectrally-selective
peaks can be centered on off-resonant frequencies for positive-contrast imaging of
susceptibility-induced frequency shifts [3]. The broad stopbands yield a high level of
background suppression. (2) The peaks of the complex difference profile are also accompanied
by sharp phase transitions, Odd TRs EvenTRs Complex Difference
which can be used to image the
BOLD-induced frequency shift
in fMRI [4].
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gradient shim. Acquisitions (Ao=1°) in odd (left) and even
(center) TRs can be subtracted to yield a profile with peaks at
integer multiples of 1/TR (right).
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Figure 1. (a) Perturbed bSSFP pulse sequence, with alternate
flip angles perturbed by Aa°. (b) Magnetization profile in odd
TRs (solid blue) and even TRs (dashed green) for TR=4.6 ms,
a=60°, Ao=1°, T1/T2=5. (c) Eigenvalues and eigenvectors of
the system matrix, R, for a standard bSSFP sequence (Ao=0°).
At 60 Hz, there is one dominant eigenvalue (red diamond),
and the steady-state magnetization vector (M) is parallel to
the corresponding eigenvector. At 0 Hz, all eigenvalues are
close to 1 (i.e., R=I), but M, remains parallel to the dominant
eigenvector (dotted black). (d) Eigenvalues and eigenvectors
for perturbed sequence (Ao=1°) at 0 Hz. Real eigenvalue
(purple ‘x’) is no longer dominant, and M, in odd (solid blue)
and even (dashed green) TRs deviates significantly from M,
for standard bSSFP at 0 Hz (dotted black).
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Figure 2. Projection of magnetization trajectory of perturbed
sequence (Ao=1°) onto x-y and y-z planes. Trajectory at 60
Hz (dot-dashed red) is essentially identical to bSSFP. X-Y
trajectory at 10 Hz (solid blue) is shifted to compensate for the
unequal flip angles. Trajectory at 0 Hz (dashed green) is
constrained to the y-z plane and requires large rotation to
account for unequal flip angles.



