

Cerebral arterial and venous blood volume changes during the post-stimulus BOLD undershoot period

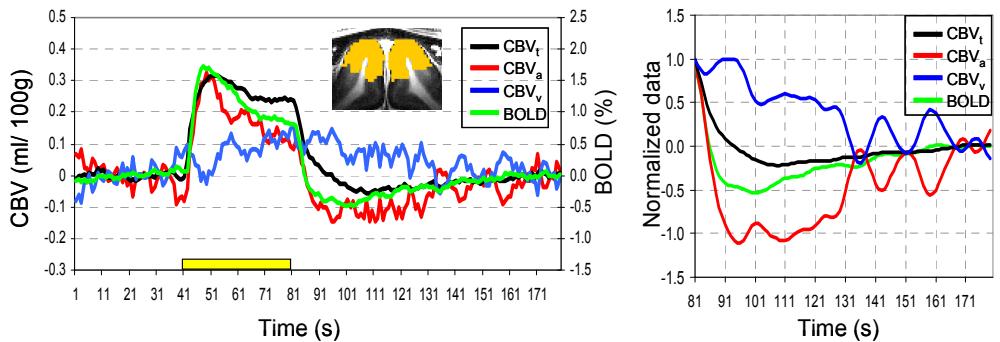
T. Kim¹, and S-G. Kim¹

¹Neuroimaging Laboratory, Radiology, University of Pittsburgh, Pittsburgh, PA, United States

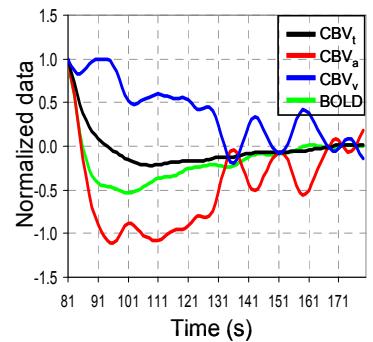
Introduction

The BOLD signal relies on the content of deoxyhemoglobin (dHB), which mediates from changes in cerebral blood flow (CBF), blood volume (CBV) and metabolic rate of oxygen (CMRO₂). The post-stimulus undershoot has been often observed (1-6), however, its physiological source is still controversial. Two main ideas have been proposed. After cessation of stimulation, CBF and CBV return to the baseline quickly and a continued increase of CMRO₂ induces a BOLD undershoot (3,4), while a delayed compliance of CBV return induces post-stimulus undershoot (5). However, total CBV (CBV_t) measured by MRI contains both BOLD-insensitive arterial and BOLD-sensitive venous blood volume (CBV_a and CBV_v), but only a sustained increase in CBV_v induces the BOLD undershoot. Therefore, CBV_v measurements are necessary for better understanding of BOLD undershoot source. In this study, functional CBV_a and CBV_t changes (Δ CBV_a and Δ CBV_t) were measured in the same animals with magnetization transfer (MT)-varied fMRI (6) and contrast-agent fMRI techniques (5), respectively. Temporal characteristics of Δ CBV_t, Δ CBV_a, and Δ CBV_v were determined and compared with BOLD fMRI.

Methods


Seven female adolescent cats weighing 1.0-1.5 kg were studied on a 9.4-T MRI (Varian) system using a single surface coil. Animals were maintained within normal physiological ranges under 0.9-1.1% isoflurane-anesthesia. During 40-s stimulation, binocular full-field visual stimuli were presented with square-wave high-contrast moving gratings. General imaging parameters were FOV = 2.0 × 2.0 cm², slice thickness = 2 mm. Δ CBV_a and Δ CBV_t fMRI was performed by GE-EPI with in-plane resolution = 312 μ m × 312 μ m, and flip angle ≈ 20°. Stimulus-induced Δ CBV_a measurements were performed with TR = 1 s and TE = 20 ms. Three (or two) targeted MT ratio (MTR) values (= 0, (~0.3) and ~0.6, in randomized order) in gray matter were achieved by adjusting the power level of MT-inducing RF pulses (+5 kHz off-resonance). Normalized stimulation-induced signal changes with MT were linearly fit against normalized baseline signal with MT (1-MTR), and Δ CBV_a was obtained from the intercept (6). For Δ CBV_t fMRI with TR = 1 s and TE = 13 ms, 7-15 mg/kg monocrystalline iron oxide nanoparticles were injected, and stimulus-induced percentage CBV_t changes (Δ CBV_t/CBV_t) were calculated as previously described (5). We converted Δ CBV_t/CBV_t to Δ CBV_t by estimating baseline CBV_t, assuming the peak amplitude of Δ CBV_t = the peak amplitude of Δ CBV_a. Then, Δ CBV_v was obtained from the subtraction of Δ CBV_a from Δ CBV_t.

Results and Discussion


Post-stimulus BOLD undershoots were observed in all seven animal data (Fig. 1). Both Δ CBV_a (red) and Δ CBV_t (black) time courses showed rapid, positive changes after stimulus onset followed by small undershoots after stimulation, while Δ CBV_v (blue) slowly increased after stimulus onset, and then slowly decreased during the post-stimulus BOLD undershoot period. Fig. 2 shows normalized CBV and BOLD signals after the cessation of stimulation (80 s). Slow return of venous CBV (blue trace) contributes to the negative change of BOLD signal (green trace), which agrees with Δ CBV_v measurements in humans (7). Since Δ CBF is mediated by Δ CBV_a, transient CBF decrease is expected during the post-stimulation period, which will result in a transient decrease in venous oxygen saturation level. The post-stimulus CBF undershoot was also observed previously (7,8). Our findings suggest that both post-stimulus CBF undershoot and slow CBV_v return contribute to the post-stimulus BOLD undershoot. Since dynamic differences between venous and total CBV change exist, Δ CBV_v (instead of Δ CBV_t) should be measured to explain the source of the BOLD signal.

References 1. Frahm et al., JMRI 2, 501-5 (1992). 2. Ogawa et al., PNAS 87, 9868-72 (1992). 3. Frahm et al., MRM 35, 143-8 (1996). 4. Lu et al., JCBFM 24, 764-70 (2004). 5. Mandeville et al., JCBFM 19, 679-89 (1999). 6. Kim et al., MRM 60, 1518-23 (2008). 7. Chen and Pike, Neuroimage 46, 559-68 (2009). 8. Jin and Kim, Neuroimage 43: 1-9, (2008).

Acknowledgments: NIH grants (EB003375, EB003324, NS44589)

Fig. 1. Averaged time courses ($n = 7$) of Δ CBV_a (red), Δ CBV_t (black), Δ CBV_v (blue) and BOLD signal (green) were obtained from the intracortical ROI in the visual cortex (yellow pixels in inserted figure). Yellow bar: 40-s stimulation period.

Fig. 2. Normalized Δ CBV_a, Δ CBV_t, Δ CBV_v and BOLD signal during the post-stimulus period. Cubic smoothing spline was applied.