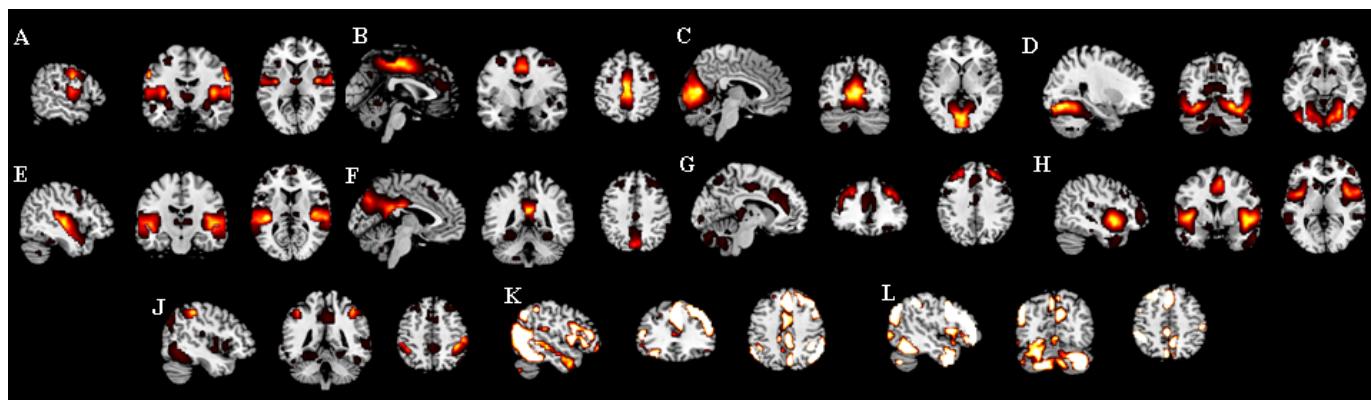


GENDER DIFFERENCES IN BRAIN STRUCTURE AND RESTING STATE ACTIVITY: A STUDY IN A LARGE COHORT OF YOUNG HEALTHY SUBJECTS

P. Valsasina¹, M. A. Rocca¹, G. Riccitelli¹, A. Falini², G. Comi³, and M. Filippi¹


¹Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Hospital, Milan, Milan, Italy, ²Department of Neuroradiology, San Raffaele Hospital, Milan, Milan, Italy, ³Department of Neurology, San Raffaele Hospital, Milan, Milan, Italy

Introduction. Previous functional MRI (fMRI) studies have shown that cortical activations differ between males (M) and females (F) when performing the same tasks [1]. Using voxel-based morphometry (VBM), gender-related differences of gray matter (GM) volume have also been demonstrated [2].

Objective. To assess, in a large group of young healthy subjects, gender-related differences in the resting state (RS) activity in all RS networks (RSNs) with a possible functional relevance, and to investigate their correspondence with GM volume differences assessed with VBM.

Methods. Using a 3.0 Tesla scanner, RS fMRI scans and 3D high-resolution T1-weighted images were acquired from 104 right-handed healthy controls (48 male [M]/56 female [F], mean age=23.5/22.8 years). Independent component analysis was used to decompose resting fMRI data into spatially independent components (ICs) using the GIFT software (Group ICA of FMRI Toolbox) [3]. This analysis produced 41 ICs. A frequency analysis of IC time courses and correlation with custom-made templates based on previous studies [4] was used to identify RSNs with potential functional relevance. VBM analysis was performed using SPM8 and Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) [5]. Between-gender differences of RSNs and GM volumes were analyzed using SPM8 and two-sample t-tests.

Results. The analysis of RS data detected 11 networks with potential functional relevance, which are shown in Figure 1.

Figure 1. RSNs with potential functional relevance detected in healthy subjects: A,B: sensorimotor networks; C,D: primary and secondary visual networks; E: auditory network; F: default mode network (DMN); G: executive control network (ECN); H: salience network (SN); J: bilateral fronto-parietal network; K,L: right and left working memory networks.

Gender differences of RS activity. Differences in the entity of RS activity were found in the majority of the detected RSNs. In summary, M had higher RS fluctuations than F in several regions of the temporal and parietal lobes, including the bilateral middle temporal gyrus (MTG), the right (R) insula, the R postcentral gyrus and the bilateral paracentral lobule. Conversely, F had higher RS activity than M in several regions of the frontal lobes (the middle frontal gyrus [MFG], the inferior frontal gyrus [IFG] and the anterior cingulate cortex [ACC]), the bilateral cerebellum, and some visual and auditory regions (See Table 1 for further details).

	Sensory and motor RS networks					Cognitive RS networks					
	Sensori-motor RSN (A)	Sensori-motor RSN (B)	Primary visual RSN (C)	Secondary visual RSN (D)	Auditory RSN (E)	DMN (F)	ECN (G)	SN (H)	Fronto-parietal RSN (J)	R working memory RSN (K)	L working memory RSN (K)
M vs. F	R postcentral gyrus; Bilateral paracentral lobule; L cerebellum	-	-	-	-	-	L MTG	R insula	R insula; R MTG	-	L supplementary motor area (SMA).
F vs. M	-	-	L precuneus; Bilateral fusiform gyrus	R cerebellum	R cerebellum; R MTG	R precuneus	L MFG	L ACC; L IFG	-	L cerebellum	Bilateral cerebellum.

Table 1. Gender-related differences in the entity of RS activity for the RSNs of interest.

Voxel-based morphometry. Compared to F, M had an increased GM volume in the R occipital cortex. Conversely, F showed an increased GM volume than M in the L superior orbitofrontal cortex, the bilateral precuneus, the R ACC and the L caudate.

Conclusions. Gender-related differences were found in the majority of the brain RSNs. Functional differences had only a minimal overlap with volumetric GM differences.

References. [1] Bell et al., Neuroimage 2006;30:529-538; [2] Good et al., Neuroimage 2001;14:21-36; [3] Calhoun et al., Hum Brain Mapp 2001;14:140-151; [4] Damoiseaux et al., PNAS 2006;103:1384-53; [5] Ashburner J. Neuroimage 2007;38:95-113.