Hydraulic conductivity estimation using magnetic resonance elastography
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Introduction:

Mechanical property estimation of in vivo tissue offers opportunities for detecting and diagnosing disease. One common
technique is magnetic resonance elastography1 (MRE) which converts measurements of tissue deformation into an image of
material property distributions (most often shear modulus) by applying a mechanical model that describes the tissue’s response
to the induced motion — most commonly under linear elastic or viscoelastic assumptions. In biphasic tissues such as brain
parenchyma, a poroelastic material model may be needed to separate the response of the solid tissue matrix from the penetrating
interstitial fluid. While a poroelastic model has been shown to estimate shear modulus and pore-pressure’, hydrodynamic
parameters like hydraulic conductivity (%c) could also provide new clinical information. Defined as the rate at which fluid
penetrates through pores, 4c could delineate tumors (where perfusion is much lower), detect increases in intracranial pressure in
diseases such as hydrocephalus or insults associated with traumatic brain injury, or elucidate mechanisms of drug delivery.
Here, we present our initial results from an image reconstruction algorithm which estimates the spatial distribution of /¢ from
simulated and experimental MRE motion data.

Methods:

Our original MR poroelastography (MRPE) subzone-based image reconstruction algorithm®™ was modified to estimate the Ac
parameter. Initial simulations were performed on 1-inclusion and 3-inclusion poroelastic phantoms. The 3-inclusion simulation
(see Figure 1) was similar in size and was actuated at the same frequencies as our typical experimental phantom blocks. The left
inclusion was assigned contrast in shear modulus and /¢ with the background, the middle inclusion had only shear modulus
contrast, whereas the right inclusion had only Ac contrast. Differing contrast levels, initial estimates, regularization parameters,
and amounts of measurement noise were used to evaluate the overall robustness of estimating 4c from the synthetic data. Data
from an actual gelatin inclusion-in-tofu background phantom were also reconstructed — where gelatin is expected to have a
lower Ac than tofu.

Results:
The MRPE algorithm reconstructed the simulated phantoms with high accuracy for
O O both shear modulus and /c (Figure 1). The shear modulus estimation reaches the
correct solution in fewer iterations than /c, is more robust to measurement noise
and requires less regularization. For example, 4c was robust to 3% Gaussian noise
and shear modulus was robust to 5% noise. Initial images recovered from
experimental data acquired on a gelatin-in-tofu phantom showed correct spatial

delineation of the gelatin inclusion and similar shear modulus contrast but more
modest levels of contrast in /¢ than expected.

Conclusions:

Figure 1: Reconstructed images of a  Hydraulic conductivity is a potentially new mechanical property of biphasic tissue

simulated 3-inclusion phantom. Top that may have application in tumor delineation, ICP detection, and drug delivery.

image shows shear modulus and MR poroelastography is an avenue for noninvasive Ac estimation in vivo. Current

bottom  image shows hydraulic  regults show that estimation of this parameter is possible in simulations

conductivity (hc). Left inclusion had ., ocontative of typical experimental conditions. Initial gelatin-in-tofu phantom

contrast in both shear and hc, middle . R .

. . . . experimental results showed some contrast in /¢ relative to shear modulus, but the

inclusion in shear only and right . . . . .

inclusion in hc only. differences b.etwe.en the background and 1nclq51oq were less than anticipated and
further algorithmic development and evaluation is warranted. For example, the

reconstruction process may require higher regularization or different degrees of

spatial parameterization of /c relative to the shear modulus.
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