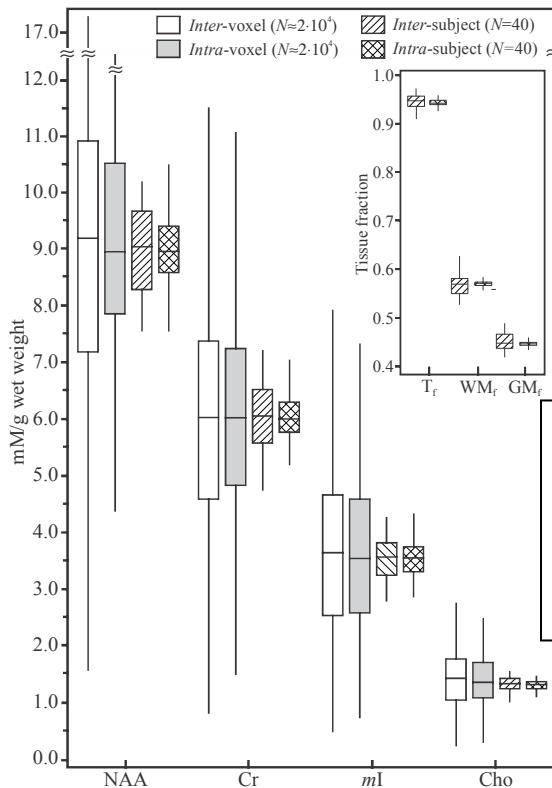


Longitudinal inter- and intra-individual human brain metabolic quantification with proton MR spectroscopy at 3T


I. Kirov¹, I. George¹, N. Jayawickrama¹, J. Babb¹, N. Perry¹, and O. Gonen¹

¹Radiology, New York University, New York, NY, United States

INTRODUCTION: Proton MR spectroscopy (¹H-MRS) is used to add metabolic specificity to the high morphological sensitivity of clinical MRI, both in research and clinical applications. Monitoring disease progression with ¹H-MRS requires knowledge of the metabolites' normal cross-sectional and longitudinal variation. Single-voxel and multi-voxel ¹H-MRS studies report *inter-* and *intra-individual* coefficients of variation (CVs) as low as 3% to over 20% at 1.5 T, but only a handful quantify them at the higher, 3 T, clinical field. Moreover, none to our knowledge have examined these variations serially for more than a few months. In addition, given the diffuse nature of most neurological disorders the small, <10%, brain coverage of single- voxel or two-dimensional (2D) multivoxel ¹H-MRS may: (i) not represent global tissue status; (ii) be dominated by instrumental noise; (iii) be influenced by partial volume in the same exam; (iv) be confounded by volume-of-interest (VOI) misregistration in serial studies.

To reduce the contribution of repositioning and instrumental noise, we summed the phased and frequency-aligned spectra from all 480 voxels of a 3D ¹H-MRS acquisition over a 360 cm³ VOI (~30% of the human brain) in post-processing. Whole-VOI summation yields a single average spectrum that is relevant to diffuse brain disorders yet with the substantial signal-to-noise ratio (SNR) improvement that is essential for reproducibility, at minimal cost in spectral resolution and repositioning errors. Our two goals, consequently, were to establish the normal brain's cross-sectional (*inter-*) and longitudinal (*intra-subject*) variations of *N*-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and *myo*-inositol (mI). Towards this end we applied annual test-retest 3D ¹H-MRS in the brain of ten healthy subjects over a period of three years at the current "high" clinical magnetic field strength of 3 T.

METHODS: Ten healthy volunteers (7 women, 3 men) 24 to 43 (mean 30) years old were scanned. A 10_{AP} × 8_{LR} × 4.5_{IS} = 360 cm³ VOI centered on the corpus callosum excited with *TE/TR* = 35/1800 ms PRESS in 3 sequentially-acquired slabs each with 2nd order Hadamard-encoding in the IS direction. A 16_{AP} × 16_{LR} × 4.5_{IS} cm³ field of view containing the VOI was partitioned into 480 1.0_{AP} × 1.0_{LR} × 0.75_{IS} = 0.75 cm³ voxels with 16_{AP} × 16_{LR} 2D chemical-shift imaging matrix. Two ¹H-MRS averages were obtained.

Figure 2: Main plot: Box plots of the NAA, Cr, Cho and mI absolute concentrations distributions for **single voxels**: within-voxel variance from all scans (*inter-voxel*), within-session variance (*intra-voxel*, shaded); and the **summed spectra**: single time points across all subjects (*inter-subject*, right-hatched) and all time points of the same subject (*intra-subject*, cross-hatched). Note the dramatic, $\times 4$ to $\times 7$ fold, improvement in both cross-sectional and longitudinal reproducibility of the sums compared with the single voxels. **Insert:** Box plots of the GM, WM and tissue fractions (GM_f, WM_f and T_f) distributions in the VOIs of all subjects. Note the narrow distribution, indicating the minimal GM/WM/CSF partial volume repositioning error of the proposed approach.

RESULTS: The means of the four time points were 8.9, 5.9, 1.4 and 3.7 mM. The *inter-subject* NAA, Cr, Cho and mI CVs: 8.7%, 10.2%, 10.7% and 11.8%, were higher than the *intra-subjects*: 6.6%, 6.8%, 6.8% and 10%. The much higher respective *inter-* (38%, 42%, 47% and 49%) and *intra-voxel* (35%, 44%, 55% and 62%) CVs reflect the improved reproducibility of the VOI sums, consequence of the high SNR (**Fig. 2**).

CONCLUSION: The CVs of the *inter-* and *intra-subject* measurements of the proposed ¹H-MRS approach are shown to be on the order of 9-12% and 7-10%, respectively. These indicate good cross-sectional and longitudinal reproducibility of a method suitable for detection of subtle metabolic changes occurring diffusely in a large (~0.4 L) brain volume. Given the over 10% metabolic changes reported in several diffuse brain pathologies, the proposed method may be capable of identifying statistically significant changes with one measurement in a single individual, performance unlikely to be realized with (much) smaller VOIs, whether they are acquired in single voxel or multi-dimensional ¹H-MRS.