Serial R₂* MRI to Evaluate Response to Tumour Vascular Disruptive Treatment: Final Results of a Clinical Phase I Trial

M. Zweifel¹, D. Patterson¹, N. J. Taylor², J. J. Stirling², I. C. Simcock², D. J. Collins³, J. A. d'Arcy³, M. O. Leach³, G. J. Rustin¹, and A. R. Padhani²

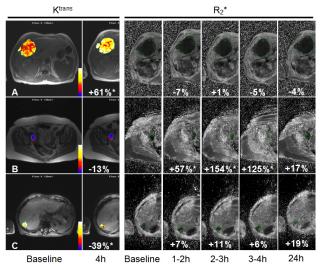
¹Dept of Medical Oncology, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, ²Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, ³CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom

Introduction

The tubulin-binding vascular disrupting agent (VDA) OXi4503 (combretastatin A1 phosphate, CA1P) destroys pre-existing blood vessels of tumours, leading to rapid shutdown of the tumour's blood supply. For the evaluation of pharmacodynamic effects of other VDAs, dynamic contrast enhanced MRI (DCE-MRI) studies have been performed after 3-4h of drug administration. Robinson et al. have shown that the intrinsic susceptibility MRI parameter R_2^* can be used to non-invasively detect VDA activity in animal models when measurements are repeatedly acquired [1,2]. In the now completed translational phase I clinical trial of OXi4503, we performed repeated R_2^* measurements during the first 4 hours after the first OXi4503 administration.

Patients and Methods

Patients with advanced tumours refractory to standard therapy were treated with escalating doses of OXi4503 from 0.06 to 14 mg/m² body surface area as a weekly infusion on 3 of 4 weeks per cycle. MRI was performed using a 1.5 T Siemens Symphony scanner. A spoiled multi-echo T2*weighted MRI sequence (TE 5-75ms, TR100ms, flip angle (a) 40°, 8mm slice thickness, FOV 260mm, 256² matrix) was used. T1-weighted DCE-MRI sequences (TE 4.7ms, TR 11ms, a 35°, 256² matrix) were also performed using 0.1mmol/kg bw of GD-DTPA. DCE-MRI images were analysed with specialist MRIW software (Institute of Cancer Research, London) using Tofts' pharmacokinetic model [3] and a population arterial input function (Modified Fritz-Hansen [4]). Whole tumour DCE-MRI kinetic parameters (K^{trans}, IAUGC₆₀), and R₂* were calculated. Two MRI scans (DCE-MRI and R₂*) were performed within 8 days prior to treatment to establish reproducibility. R₂* measurements were obtained every 45-60 min for up to 4 hours; intermittent repositionings of the patients were undertaken and R₂* images were replanned on new morphological sequences. DCE-MRI was performed after 4 hours. Patients were grouped by drug dose (low dose [0.06-5 mg//m²]/intermediate dose [6.5-11 mg//m²]/high dose [12.5-14 mg//m²]) and by DCE response at 4h (no K^{trans}-decrease, non-significant K^{trans}-decrease, or significant K^{trans}-decrease). Group and individual lesion changes were assessed for significance from the calculated reproducibility using methods of Galbraith [5].

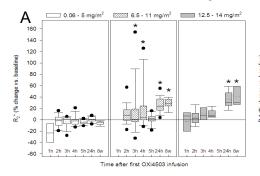

Results

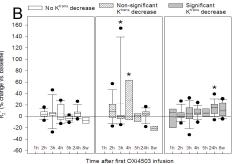
22 patients with 27 lesions were evaluable. K^{trans} and R_2^* images of three patients are shown in Figure 1. Threshold values (n=1) were: K^{trans} -14%; R_2^* ±43.31%. When patients are grouped by drug dose (low dose [n=8], intermediate dose [n=8], and high dose [n=11]), significant increases in group R_2^* are seen at 24 hours and 8 weeks

in the intermediate and high dose group only. Interestingly, significant increases in R₂* at 3h and 4h were only seen in the intermediate dose group (Figures 1B and 2A). When patients are grouped according to K^{trans} response (no K^{trans} decrease; n=8, non-significant K^{trans} decrease; n=11), early R₂* changes were only seen in patients with non-significant K^{trans} decreases (Figure 2B).

Discussion and Conclusion

This is the first, in man study of serial BOLD-MRI after a VDA, indicating that R₂* shows significant VDA effect within the first few hours after OXi4503. DCE-MRI showed a significant dose - response relationship (data not shown). The findings with R₂* were surprising in that it was only the group with non-significant K^{trans}-decreases, treated at intermediate doses, that showed significant increases in R₂*. The mechanistic explanation may be that at intermediate doses, deoxygenated erythrocytes become entrapped within the tumour vasculature. At higher doses




Figure 1: K^{trans} maps at baseline and at 4h, and R_2^* maps at baseline and at 1-2h, 2-3h, 3-4h, and 24h after OXi4503 infusion in a patient with liver metastasis of pancreatic cancer treated at low dose (3.84 mg/m²) (A), in a patient with pelvic metastasis of melanoma at intermediate dose (8.5 mg/m²) (B), and in a patient with liver metastasis of epithelial ovarian cancer at high dose (14 mg/m²) (C).

Only in the patient with a nonsignificant K^{trans}-decrease treated at intermediate dose (B), but neither in the patient with no K^{trans}-decrease, treated at low dose (A), nor in the patient with significant K^{trans}-decrease, treated at high dose, a significant increase in R₂* is seen

Numbers indicate the %-change in K^{trans} , and R_2^* , respectively.

there is marked vascular collapse resulting in the emptying of blood vessels of red blood cells and therefore paradoxically not changing the R_2^* . Both K^{trans} and R_2^* are recommended as MR biomarkers for evaluating VDAs.

Figure 2: Box plots for changes in R₂* at different time points with patients grouped by drug dose (A) and DCE response at 4 hours (B). When patients are grouped by drug dose (low dose [n=8], intermediate dose [n=8], and high dose [n=11], significant increases in group R₂* are seen at 24 hours and 8 weeks in the intermediate and high dose group only (*). Interestingly, significant increases in R₂* at 3h and 4h is only seen in the intermediate dose group (A). Early R₂* changes were only seen in patients with non-significant K^{trans} decreases (B). *p<0.05.

[1] Robinson SP et al, *Neoplasia*. 2005 May;7(5):466-74. [2] McPhail LD et al, *Int J Radiat Oncol Biol Phys*. 2007 Nov 15;69(4):1238-45. [3] Tofts PS. *JMRI* (1997)7(1): 91-101. [4] Walker-Samuel S. et al. *Phys Med Biol* 2007, **52**:589-601. [5] Galbraith SM et al, *NMR Biomed*. 2002;**15**:132–142.

D. J. C., J. A. d'A. and M. O. L. acknowledge CRUK, EPSRC, MRC and NIHR for funding the Cancer Imaging Centre (C1060/A10334) and NHS funding for the NIHR Biomedical Research Centre at ICR/RMH.