

Quantitative Evaluation of Regional RF shimming on a Wide Aperture Dual-Channel Multi-Transmit 3.0T: Implications for cardiac MRI

R. Krishnamurthy¹, A. Pednekar², M. Kouwenhoven³, P. Harvey³, C. Arena⁴, B. Cheong⁴, M. Kouwenhoven³, and R. Muthupillai⁴

¹Bioengineering, Rice University, Houston, Texas, United States, ²Philips Healthcare, Houston, Texas, United States, ³Philips Healthcare, Best, Netherlands,

⁴Diagnostic and Interventional Radiology, St. Luke's Episcopal Hospital, Houston, Texas, United States

Introduction: At 3.0T and higher field strengths, the wavelength of the radio-frequency (RF) excitation becomes comparable to or smaller than the size of the human body. As a result, B_1 field is non-uniform across the slice, and is an important cause of artifacts and degradation of image quality. Unlike B_0 inhomogeneities, the loss of contrast experienced due to B_1 inhomogeneity is irrecoverable, and is a problem that needs to be addressed during the excitation process. Recently multiport parallel RF transmission systems have been proposed as a means for improving B_1 homogeneity [1-3]. The purpose of this study is to quantitatively evaluate the performance of a dual channel multi-transmit system to RF shim a region of interest, in a series of subjects.

Materials and Methods: Subjects: Eleven normal subjects (8 male, 49 ± 16 yrs) were imaged on a wide-aperture 3.0T Ingenia (Philips Healthcare). All data acquisition was VCG gated. A combination of 16 channels from the table-top integrated digital posterior coil and 16 channels from the digital anterior coil were used for signal reception. A two channel multi-transmit system with independent RF control was used for excitation. All subjects provided written informed consent.

MRI Acquisition: B_1 maps of the axial plane across the heart were generated using a saturation-recovery, dual flip angle method described previously [4-6]. The acquisition parameters

were: TR/TE = 1000/5.7 ms; Nominal flip angle = $30^\circ/60^\circ$; acquired voxel size = $5 \times 10 \times 10$ mm 3 ; and readout EPI factor: 11. Based on the acquired complex B_1 map, the amplitude and phase settings of the two transmit channels were set independently to minimize the B_1 variation within the prescribed volume of interest (Volume shim). The B_1 maps were then acquired with and without volume RF shimming for direct comparison (Figure 1).

Data Analysis: On the B_1 maps generated with and without volume RF shim settings, ROIs circumscribing the heart were drawn using a custom built software (MATLABTM, The MathWorks, Natick, MA). The B_1 maps were scaled as a percent of the prescribed flip angle. The following metrics were used for quantitative evaluation of RF homogeneity: 1) The ratio of standard deviation (σ) to mean (μ) of the pixels within the ROI, where a lower ratio corresponds to more uniformity. 2) The fraction of the total number of pixels that fall within a specific percent of the mean. A higher count at a given threshold corresponds to a more uniform B_1 field distribution.

Results: The σ/μ ratio revealed better RF

homogeneity in each subject with subject-specific volume shimming (Figure 2). The average σ/μ for the 11 subjects improved from 0.116 ± 0.03 without patient adaptive RF shimming to 0.058 ± 0.01 for patient adaptive volume shimming ($p < 0.0001$, paired Student's t-test). This reduction corresponded to a mean increase in B_1 homogeneity of $48 \pm 12\%$ with volume RF shimming. The total number of voxels that lie within a fraction of the mean flip angle was also evaluated (Figure 3). With volume RF shimming, 97% of the voxels lie within $\pm 10\%$ of the mean flip angle across the ROI compared to only 76% of the voxels without. Also, the mean value of the B_1 map from volume RF shimming was closer to the prescribed flip angle (i.e., 100%) - $85.7 \pm 11.5\%$ with volume RF shimming vs. $79.2 \pm 12.7\%$ without ($p < 0.005$). A representative image demonstrating the benefit of volume RF shimming using a multi-transmit system is shown in Figure 4. Note the substantial shading artifact seen near the anterior chest wall and RV without volume RF shimming.

Conclusions: The results from the study show the following: (a) At 3.0T even across a small region as the heart, effective flip angles can be in excess of 20% of the prescribed flip angle in over 25% of the pixels without RF shimming.; (b) Patient specific, volume RF shimming using a two-channel multi-transmit system is effective in both reducing the flip angle variation over a prescribed region of interest, e.g., heart, as well as help attain a flip angle that is closer to the prescribed flip angle. B_1 shimming is an important component to be considered in all quantitative magnetic resonance imaging.

References: 1. Roschmann, *Med. Phys.*, 14(6), 1987; 2. U.Katscher et al., *NMR in Biomed.*, 19, 393-400, 2006. 3. Sung et al., *JMRI*, 27:643-648. 4. Cunningham et al., *MRM*, 55:1326-1333; 5) M.Schar, *MRM*, 63:419-426. 6) Harvey P.R., et al *Proc. ISMRM* 2010, 1486.

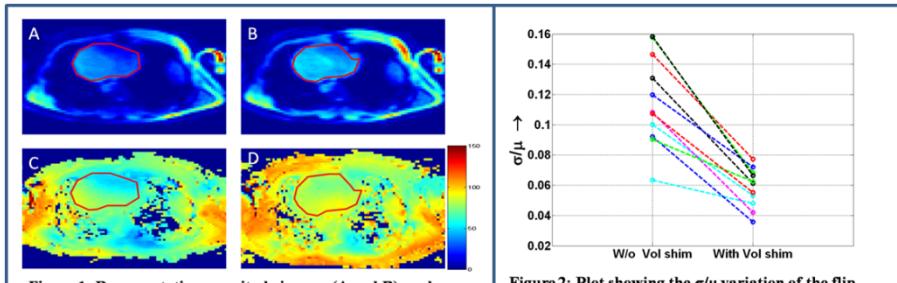


Figure 1: Representative magnitude images (A and B), and B_1 maps (C and D). Images A and C are without volume RF shimming while B and D are with volume RF shimming. ROI selected is shown in red in all images.

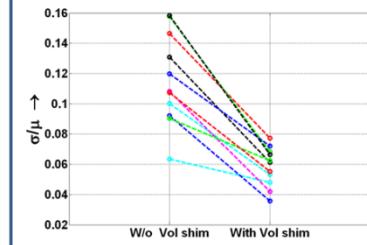


Figure 2: Plot showing the σ/μ variation of the flip angle distribution across the ROI. An average drop of 48 ± 12 is seen, corresponding to a more uniform B_1 map in the case of a volume RF shim.

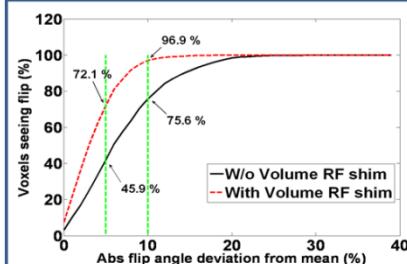


Figure 3: Plot showing the mean number of voxels in the selected ROI that falls within a given flip angle from the mean. Volume RF shimming performs better with 96.9% of voxels in the ROI falling within $\pm 10\%$ of the mean flip.

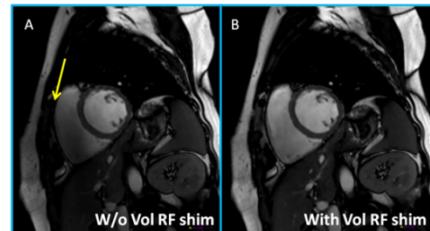


Figure 4: Representative image of a short axis balanced FFE image. The B_1 field inhomogeneity can be seen when volume RF shimming is not used (arrow), which is reduced using volume RF shimming (B).