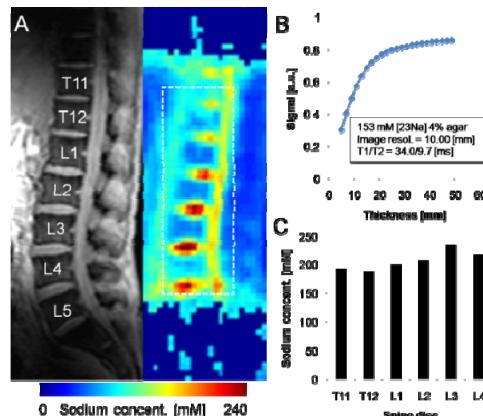


In Vivo Sodium and Proton T1rho MR Imaging of Human Spine Disc at 3T

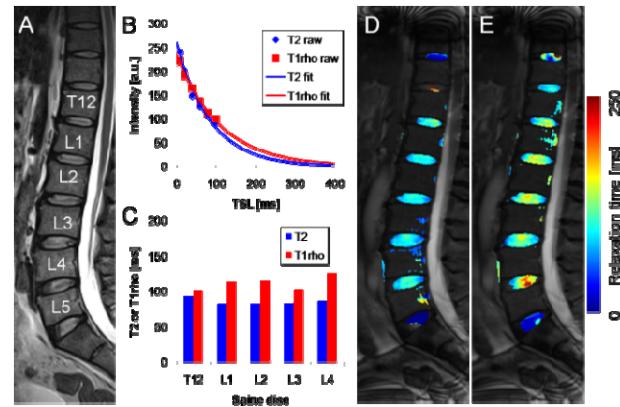
C. Moon¹, J-H. Kim¹, X. He¹, T. Zhao², and K. Bae¹

¹Radiology, University of Pittsburgh, Pittsburgh, PA, United States, ²MR Research Support, Siemens Healthcare, Pittsburgh, PA, United States

[Introduction] With aging, intervertebral discs undergo biochemical and morphological changes that may lead to degenerative disc disease (DDD) [1]. Loss of proteoglycan (PG), a major component of intervertebral discs, is often associated with early disc changes in DDD. As MR imaging markers for PG in the disc, sodium concentration and proton T_{1rho} relaxation time are reported to be sensitive to PG changes [2]. However, the association between the two markers of human discs in vivo has not been studied. Thus, in this study, we measured and compared sodium concentration and proton T₂/T_{1rho} relaxation times in healthy human lumbar spine discs using a newly developed dual-tuned (DT) torso coil and ultra-short echo-time (UTE) spiral and spin-lock (SL) sequences.


[Methods and materials] All scans were performed using a 3T human scanner (Siemens Medical Solutions, Germany). Two normal volunteer subjects participated in this Institutional Review Board approved study. We used an in-house DT torso RF coil which consisted of 4-channel proton and 8-channel sodium (loop dimension, 150 × 180 mm² and 130 × 200 mm², respectively) (Fig. 1). Scout and proton anatomical image were acquired (Fig. 2A). Using the same shim values, sodium MR imaging was performed - 3D UTE sequence [3]; RF hard pulse of 500-μs duration, TR/TE = 150/0.27 ms, readout time = ~15 ms, resolution = 5 mm³, TA = ~4 minutes, and average = 3. For the quantification of sodium concentration in discs, a homogeneous 60-mM [²³Na] saline phantom was used to correct B₁ inhomogeneity (right in Fig. 2A). The sodium signal reduction in disc due to the partial volume effect [thickness 8–13 mm vs. effective resolution 10 mm (= 5-mm imaging resolution + Hanning filter)] as well as sodium T₁ and T₂ decay was simulated. Sodium T₁ and T₂ of disc was assumed to be 34.1 and 9.7 ms, respectively, on basis of 4% agarose with 153-mM [²³Na] (Fig. 2B). Sodium images of discs were reformatted using maximum intensity projection. The peak value in disc was measured at various disc levels (Fig. 2C). For proton T₂ and T_{1rho} mapping, we used a commercially available spine proton coil (Siemens) to obtain improved B₁-field homogeneity. The imaging protocol was: SL SSFP, low frequency B₁ SL pulse = 0/473 Hz, time of SL (TSL) = 10–120 ms (see left figure), TR/TE = 4000/2 ms, and resolution = 1.56 × 1.56 × 4 mm³. The signal was fitted using a^a*exp{-TSL/T_{2(1rho)}}+b in pixel-by-pixel or disc ROI (Fig. 3). Following the segmentation of discs on the proton anatomical images, sodium concentration, and T₂ and T_{1rho} relaxation times over the discs were measured.

[Results and conclusions] Sodium MR imaging of lumbar spine discs was successfully acquired using a DT torso coil and UTE spiral sequence within reasonable acquisition time (< 15 min) (right in Fig. 2A). Sodium concentration of L1 to L5 ranged 190 to 235 mM (Fig. 2C), similar to values reported in a previous study [4]. The mean sodium concentration across discs was 214.9 ± 14.4 mM. Additionally, proton T₂ and T_{1rho} mapping was consistently achieved (Fig. 3D and E). Mean T₂ and T_{1rho} relaxation times of discs were 84.0 ± 1.8 and 114.2 ± 9.5 ms, respectively (Fig. 3C). All measures were similar to those reported in other study (T₂ = 92.3 6 ± 27.2 ms and T_{1rho} = 133.1 6 ± 13.8 ms) [5]. The mean sodium concentrations and proton T_{1rho} relaxation times across the discs were compared. Correlation was weak between sodium concentration and T_{1rho} ($r = 0.15$), whereas a strong correlation ($r = 0.75$) was noted between T₂ and T_{1rho}. To investigate the significance of this comparative finding and clinical implication, further studies with a larger sample size of subject are essential.


In conclusion, we obtained consistent measurement of sodium concentration and proton T₂ and T_{1rho} relaxation time in lumbar discs from normal subjects using an in-house DT torso coil and UTE and SL sequences at 3T human scanner. MR-based physiological and metabolic measures of intervertebral discs may play an important role as imaging biomarkers for early diagnosis of DDD.

[Reference] 1, Kent et al., *Chiropr Osteopat* 13 (2005). 2, Wheaton et al., *MRM*, 54:1087–1093 (2005). 3, Zhao et al., *ISMRM*, (2009). 4, Insko et al., *Acad Rad*, 9: 800–804 (2002). 5, Blumenkrantz et al., *MRM*, 63:1193–1200 (2010).

[Acknowledgments] Supported by RSNA Research Scholar grants RSCH1025.

Fig. 2 In-vivo sodium MR imaging of intervertebral disc from normal subject. **A.** (Left) Scout proton sagittal view, and (Right) the corresponding sodium MR image (maximum intensity projection) with B₁ field correction. **B.** Simulation of sodium signal reduction due to partial volume effect (8–13 mm disc thickness vs. 10-mm effective resolution) as well as sodium T₁ (34 ms) and T₂ decay (9.7 ms) of 4% agar. **C.** Sodium concentration of intervertebral discs. Mean value was ~215 mM.

Fig. 3 In-vivo proton T₂ and T_{1rho} mapping of normal human discs. **A.** Sagittal image. **B.** T₂ and T_{1rho} curve fitting for averaged signal in all the discs. **C.** Bar graph of T₂ and T_{1rho} at different discs; mean value was ~86 and ~112 ms, respectively. **D** and **E**, T₂ and T_{1rho} map of intervertebral discs. T_{1rho} value was slightly higher than T₂ value in all discs. Mapping in upper- and lower-most regions (i.e., Txx and L5/S1) was incomplete due to strong susceptibility.