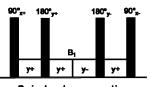
In Vivo Sodium and Proton T1rho MR Imaging of Human Knee Cartilage at 3T


C. Moon¹, J-H. Kim¹, T. Zhao², X. He¹, B-W. Park¹, and K. Bae¹

¹Radiology, University of Pittsburgh, Pittsburgh, PA, United States, ²MR Research Support, Siemens Healthcare, Pittsburgh, PA, United States

[Introduction] Knee OA is a common cause of disability in the aging population [1]. Early signs of OA involve changes in matrix composition of cartilage, such as a decrease in glycosaminoglycan (GAG) concentration. Detection of these changes using an in vivo imaging technique is clinically preferred. ²³Na atoms are closely associated with a high fixed-charge density which is present in proteoglycan sulfate and carboxylate groups of GAG [2]. For this reason, the sodium concentration in cartilage (measured by MR imaging) has been shown to be directly correlated with GAG content, which has been used for detecting and tracking changes of early OA [3]. Additionally, proton T_{1rho} is sensitive to macro-molecular water interactions in the cartilage and the change is known to be associated with PG loss [4]. In this study, we measured and compared the sodium concentration and proton T_2 and T_{1rho} of human knee cartilages in vivo at 3T.

[Methods and materials] All scans were performed using a 3T human scanner (Siemens Medical Solutions, Germany). Four normal volunteer subjects were scanned using a protocol approved by our Institutional Review Board. We used a dual-tuned knee RF coil consisting of a 4-channel proton and 8-channel sodium coil (dimension 180 × 130 mm² and 135 × 85 mm², respectively) [5]. The measured transmission inhomogeneity was approximately 11% for a homogeneous phantom and 15% for human knees (Fig. 1). For sodium MR imaging, proton scout and anatomy images

were acquired and B_o shimming was adjusted. A 3D ultra-short echo time (UTE) [6] was then applied with the following parameters: RF hard pulse of 500-µs duration; TR/TE = 100 - 150/0.27 ms; readout time = \sim 15 ms; resolution = 3 mm³; TA = \sim 4 minutes; and average = 2 to 3. For the quantification of sodium concentration of cartilages, a homogeneous 75-mM [23 Na] saline phantom was used to calibrate B₁ inhomogeneity. Sodium T₁/T₂ relaxation time of 153-mM [²³Na] saline and 4% agar with 153-mM [²³Na] was measured as 42.7/17.6 ms and 34.1/9.7 ms, respectively. Reduction in sodium signal due to the partial volume effect including T₁ and T₂ sodium signal decay was estimated approximately 77% at the center of 2.5-mm thick cartilage phantom. For proton T₂ and T_{1rho} mapping, we used a commercially available knee multi-channel ¹H coil (Siemens) to take advantage of a volume excitation that generates improved homogeneous B₁ field. MR imaging was performed with spin-lock (SL) SSFP sequence: low frequency B₁

Spin-Lock preparation

SL pulse= 0/473 Hz; time of SL (TSL) = 10, 20, 40, 60, 80, 100, 120 ms (see left figure); TR/TE = 4000/2 ms; and resolution = $0.78 \times 0.78 \times 2.5$ mm³. patella, tibial, and femoral cartilages on the proton anatomy images, we measured sodium concentration, and T₂ and T_{1rho} of proton over

these cartilages.

[Results and conclusions] The T_2 and T_{1rho} mapping of human knee was successfully achieved (Figs. 2B and \overline{C}). The T_2/T_{1rho} relaxation times were quantified in each knee cartilage segment; $46.9 \pm 5.3 / 53.9 \pm 4.2$ (patella), $51.7 \pm 4.8 / 61.1 \pm 3.5$ (femur), $44.7 \pm 7.4 / 50.6 \pm 6.4$ ms (tibia) (N = 4), which are slightly higher than those (45.5 ± 3.3 ms) reported in a previous study [7]. We postulate that our SL preparation pulse was more resistant to existing Bo inhomogeneity in micro environment than a typical SL preparation pulse, resulting in longer MR relaxation times. The mean sodium concentrations of the cartilages measured after the correction for B₁ inhomogeneity and partial volume effect were 229.7 \pm 15.4 mM/L (femur), 204.9 ± 24.0 (tibia) (N = 4), which were within normal physiological ranges reported in a previous study [8]. In conclusion, we obtained consistent proton T₂ and T_{1rho} relaxation times and sodium concentration in knee cartilage from normal subjects using an in-house dual-tuned knee coil and in-house sequences at 3T. We believe MR-based physiological and metabolic measures of knee cartilage change may play an important role as imaging biomarkers for early detection of knee osteoarthritis.

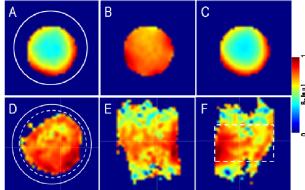
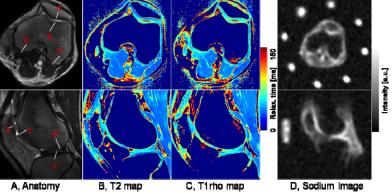



Fig. 1 Sodium B₁ field distribution measured over a phantom (A-C) and The signal was fitted using a*exp(-TSL/T_{2(1rho)})+b a human knee (D-E); using dual-tuned coil (sensitivity, transmission, and reception field), respectively. White circle represents the boundary of sodium coil, and white-dotted region is for the effective knee cartilage imaging area. Average B1 transmission field inhomogeneity error within the white-dotted cylindrical volume was ~11% for the phantom and ~15% for the human knee. Note that the reception field is weighted greater to the periphery near the receiver coils, which is a typical characteristics of the sum of field magnitude from multi-channel coils.

Fig. 2 In-vivo proton (**A**), T₂ (**B**), T_{1rho} (**C**), and sodium MR imaging (**D**) of normal human knee. (Upper) Axial and (Lower) sagittal view. MR imaging parameters are 1) SL imaging – TR/TE = 7000/3 ms, B₁ = 0/400 Hz (for T_2/T_{1rho} mapping), and TSL = 10 to 100 ms, resolution = $0.78 \times 0.78 \times 2.5$ mm³, 2) Sodium imaging – TR/TE = 100/0.26 ms, TA = 12 min, resolution = 3 mm³. White cylindrical objects in D are 30-mM reference markers with 4%agar. Annotation; a – patella, b and b' – femoral, and c – tibial cartilage. Cartilages show T_{1rho} slightly higher than T₂ value in that region of hyper-intense sodium signal.

[Reference] 1, Felson et al., Rad Clin North Ameri, 42:1-9 (2004). 2, Reddy et al., MRM, 39:697-701 (1998). 3, Burstein et al., Inv Rad, 35:622-638 (2000). 4, Wheaton et al., MRM. 54:1087–1093 (2005). 5, Kim et al., ISMRM, 2011 submitted. 6, Zhao et al., ISMRM, 2009. 7, Li et al., MRM, 61:1310-1318 (2009). 8, Wang et al., JMRI, 30:606-614 (2009). [Acknowledgements] Supported by RSNA Research Scholar grants RSCH1025.