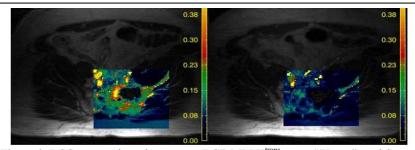
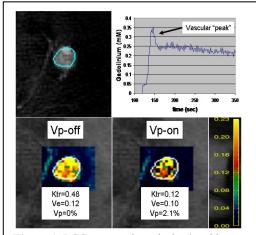
Sunitinib Induces Reductions in Tumor Vascular Permeability and Intra-tumor Vascular Volume in Renal Cell Carcinoma


M. A. Rosen¹, Y. Xue¹, S. Englander¹, D. Heitjian², H. S. Kang¹, A. Fagan¹, N. Haas³, W. Lee³, W. Carley⁴, H. K. Song¹, S. Keefe³, and Y. Jiangsheng¹¹Radiology, University of Pennsylvania, Philadelphia, PA, United States, ²Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States, ³Medicine, University of Pennsylvania, Philadelphia, PA, United States, ⁴Pfizer, Inc., Collegeville, PA, United States

Background: Several anti-angiogenic agents, including sorafenib, sunitinib, and pazopanib, are approved for therapy of renal cell carcinoma (RCC)¹. DCE-MRI has been shown to be useful for documenting vascular changes in RCC after initialization of this therapy, and pre-therapy DCE-MRI has been shown to be an effective biomarker of tumor response^{2,3}. However, variations in kinetic models make comparison of DCE-MRI results between different investigators challenging. We have recently developed radial acquisition methods for DCE-MRI that allow for retrospective image reconstruction at variable time windows⁴. We hypothesize that DCE-MRI with a higher rate of sampling will allow for assessment of plasma volume fraction (V_p), and will alter metrics other DCE-MRI (K^{trans} , K_{ep} , V_e).


Methods: Ten patients with metastatic RCC were studied by DCE-MRI before and early (mean 23 days, range 13-33 days) after initiation of oral Sunitinib therapy. Imaging was performed with 32 slice hybrid radial projection DCE-MRI with golden angle progression over the anatomic area of largest tumor burden (chest, abdomen, pelvis)⁴. Imaging parameters included TR/TE 3.2/1.6 ms, flip 25 degrees, FOV 36-40cm, matrix 192x192, slice thickness 8 mm. Images were reconstructed with KWIC processing using 25 central views, for a temporal resolution of 2 seconds per image set. 4D data sets were reviewed by a radiologist blinded to imaging time point (pre- or post-treatment). Tumors and aorta were manually segmented, with reference to HASTE T2W image sets to exclude neighboring organs or vessels. Pixel-wise enhancement curves were converted to estimated gadolinium concentration using a three-point variable flip angle method for native tumor T₁ measurement⁵. Kinetic modeling was performed with either the routine two-compartment model ("Vp-off"), or with a model including intra-tumoral vascular volume fraction ("Vp-on"). Median pixel values for all tumors assessed were reported. DCE-MRI parameters before and after therapy were compared, as were the effects of the inclusion of a finite vascular volume fraction on the magnitude of both baseline and therapy-induced changes in kinetic parameters. Significance at the p=0.05 level was assessed using the Students t-test, with correction for multiple comparison's using the Holms' procedure.

Results: Results are shown in **Table 1**. Inclusion of V_p significantly altered the absolute magnitude of tumor K^{trans} (p=0.005) and K_{ep} (p=0.009), but not V_e (p=0.44). In several tumors, there was a prominent vascular "peak" in the tumor enhancement curve (**Figure 1**), which provided for assessment of intra-tumoral vascular volume. Using the "Vp-on" model, patient-averaged declines in K^{trans} , K_{ep} , and K_{ep} after therapy were 68% (p=0.003), 53% (p=0.006), and 44% (p=0.014), respectively (**Table 1**). One example of the vascular response to Sunitinib is shown in **Figure 2**. Inclusion of K_{ep} in the DCE-MRI model did not alter the magnitude of therapy-induced changes in K^{trans} and K_{ep} . However, analysis with the "Vp-on" model demonstrated a statistically significant absolute decline in tumor plasma volume by 1.3% (relative decline 52%, p=0.019) following treatment with Sunitinib.

Table 1 Sunitinib effect on tumor DCE-MRI parameters by compartment model							
	Two-compartment			Three-compartment			
	("Vp-off") Model			("Vp-on") Model			
	K ^{trans}	K _{ep}	Ve	K ^{trans}	K _{ep}	Ve	V_p
Pre-Sunitinib	0.34	1.44	32%	0.20	0.84	32%	2.5%
Post-Sunitinib	0.10	0.60	16%	0.07	0.38	18%	1.2%
Change	-71% [†]	-44%*	-50%*	-68% [†]	-53% [†]	-44%*	-52%*
(K ^{trans} , k _{en} expressed as min ⁻¹), *p<0.05 [†] p<0.01 (pre- vs. post-treatment)							

Figure 2: RCC metastasis to the sacrum. DCE-MRI K^{trans} maps ("Vp-on" model), are shown before (left) and after (right) treatment with Sunitinib. K^{trans} response was 76%, with median pixel values of 0.15 min⁻¹ (pre-Tx) and 0.03 min⁻¹ (post-Tx).

Figure 1: RCC metastasis to the back, with gadolinium-time curve showing vascular "peak". K^{trans} color maps and DCE-MRI modeling results with and without finite tumor vascular volume, demonstrating how K^{trans} results can differ based on choice of kinetic model.

Conclusions: Intra-tumoral vascular volume is a significant contributor to tumor-gadolinium time curves in DCE-MRI of RCC. Inclusion of V_p in DCE-MRI modeling alters tumor K_{trans} , and k_{ep} values. By modeling V_p in DCE-MRI, we were able to document a decline in tumor plasma volume after therapy with Sunitinib, providing an additional imaging biomarker of tumor response to therapy in RCC.

Acknowledgments: Supported in part by Pfizer, Inc., American Cancer Society RSG-08-118-01-CCE, NIH P41-RR02305 and NIH R01-CA125226.

References: 1. Rathmell et al., <u>Curr Opin Oncol</u> 2010; 22:250-256. 2. Flaherty et al., <u>Cancer Biol Ther</u>; 2008: 7:496-501. 3. Hahn et al., <u>J Clin Oncol</u> 2008: 26: 4572-4578. 4. Lin et al., <u>Magn Res Med</u> 2008; 60: 1135-1146. 5. Cheng et al., <u>Magn Reson Med</u> 2006; 55: 566-574.