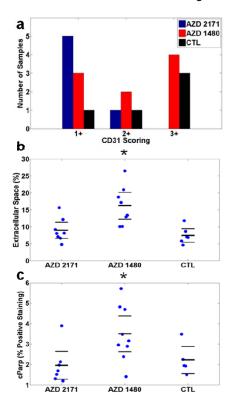
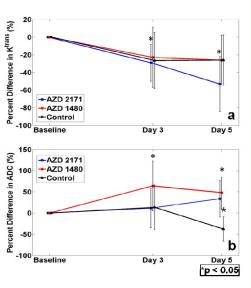
Comparisons of the Efficacy of the Jak1/2 Inhibitor AZD1480 with the VEGF signaling inhibitor cediranib (AZD2171) and Sham Treatments in Mouse Tumors Using DCE-MRI, DW-MRI, and Histology

M. E. Loveless^{1,2}, D. Lawson³, M. Collins³, D. Morosini³, C. Reimer³, D. Huszar³, J. Halliday⁴, J. C. Waterton⁴, J. C. Gore^{2,5}, and T. E. Yankeelov^{2,5}


¹Biomedical Engineering, Vanderbilt University, Nashville, TN, United States, ²Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States, ³Cancer Bioscience, AstraZeneca, Boston, MA, United States, ⁴Translational Sciences: Imaging, AstraZeneca, Macclesfield, Cheshire, United Kingdom, ⁵Radiology and Radiological Science, Vanderbilt University, Nashville, TN, United States

INTRODUCTION

Jak1/2 inhibition suppresses Stat3 phosphorylation that is characteristic of many tumor types. Activated Stat3 promotes the transcription of factors that enhance tumor growth, survival, and angiogenesis¹. AZD1480 is a novel small molecule inhibitor of Jak 1/2, which have been shown to be key mediators of Stat3 activation². Both DW-MRI and DCE-MRI have been used to monitor cancer treatment^{3,4}. This work seeks to assess the utility of DW-MRI and DCE-MRI in determining AZD1480 efficacy compared to the potent anti-angiogenic drug cediranib at early treatment time points.


MATERIALS and METHODS

Thirty mice were injected with Calu-6 lung cancer cells in the hind limb; once the tumors reached approximately 200 mm³, the mice were randomized into the following treatment groups: AZD1480 (50 mg/kg, p.o. q.d.), cediranib (6 mg/kg p.o. q.d.), and vehicle control. All animals were imaged at 9.4T at baseline, day 3 and day 5 post-

Fig 2. Plots demonstrating the number of samples in each CD31 scoring level (**a**), *EC* (%) for each treatment group (**b**), and cParp (%) staining for each group (**c**).

treatment time points. <u>DCE-MRI.</u> Precontrast T_1 maps were obtained using an IR FLASH gradient echo sequence with eight inversion times with $TR \setminus TE \setminus \alpha = 12100 \text{ ms} \setminus 3.44 \text{ ms} \setminus 15^\circ \text{ and NEX} = 4$, FOV = 35 mm², and matrix = 128^2 for fifteen 1 mm slices. The dynamic acquisition employed a SPGR sequence with $TR \setminus TE \setminus \alpha = 100 \text{ ms} \setminus 2.83 \text{ ms} \setminus 10^\circ$, and NEX = 4. A bolus of 0.1 mmol/kg Gd-DTPA was delivered

Fig 1. Percent change in K^{trans} (a) and ADC (b) for each treatment group.

via a jugular catheter using an automated syringe pump. A population derived VIF (C_p) was used to fit the tissue signal data (C_t) in the central slice for each mouse at each time point using a standard model⁵. <u>DW-MRI.</u> A gated and navigated PGSE sequence was used with the following parameters: TR\TE\α = 2000 ms\42 s\15°, acquisition matrix = 128^2 , FOV = $(35 \text{ mm})^2$, and NEX = 2 with Δ = 35.00 ms and δ =5.00 ms for b-values of 150.88, 500.2, and 800.22 mm²/s. The diffusion weighted signal at each b (S(b)) was fit to the following equation to extract the apparent diffusion coefficient (ADC)⁶

$$S(b) = S_0 e^{-ADC \cdot b}$$
.

The percent change from baseline measurements for K^{trans} , ADC, and v_e were calculated for each time point. The Wilcoxon rank test identified significant changes in imaging parameters while H&E, CD31, cParp, and Ki-67 histology data validated the results.

RESULTS

Fig. 1 presents the resulting K^{trans} (1a) and ADC (1b) changes for each treatment group. A significant decrease (indicated by '*') in K^{trans} was found at both day 3 and day 5 post-tx time points for the cediranib group. Interestingly, no significant changes in K^{trans} occurred for the AZD1480 group compared to controls, but a significant increase in ADC was demonstrated at day 3 and day 5. Control data showed a significant decrease in ADC at day 5. No significant changes in v_e were demonstrated in any treatment group except a decrease in the cediranib group at day 5. Histology acquired after day 5 (**Fig. 2**) indicated attenuated vasculature in the cediranib treatment group (1+ = reduced vascularity while 3+ = high vascularity) while no significant changes were shown in the AZD1480 or control groups (2a). Significant apoptotic activity (positive cParp staining in 2c) and significantly increased extracellular space (2c) was present in the AZD1480

group with no changes in the cediranib/control groups (2c). DISCUSSION

The lack of significant group changes in K^{trans} demonstrate that day 3 and day 5 of a 50 mg/kg q.d. dose of AZD1480 may be too early to see anti-angiogenic effects, compared to the VEGF signaling inhibitor cediranib. The more sensitive measure for AZD 1480 treatment seemed to be ADC. Significant increases in ADC were indicated while histology indicated a significant increase in apoptosis and extracellular space in this treatment group. Thus, tumor cell death was evident in AZD1480-treated xenografts in the absence of anti-angiogenic activity while anti-angiogenic activity (decreased K^{trans}) was detectable in xenografts treated with cediranib.

REFERENCES [1] Yu H et al; Nature Review 2004;4:97-105, [2] Hedvat M, et al, Cancer Cell 2009;16:487-97, [3] Yankeelov TE et al. Cur Med Imaging Rev 2007;3:91-107, [4] Padhani AR, et al; Neoplasia 2009;11:102-25, [5] Tofts et al; JMRI 1999;10:223-32, [6] Stejskal EO et al; J Chem Phys 1965;42:288-92.

ACKNOWLEDGEMENTS AstraZeneca predoctoral training grant, NIH 1K25 EB005936, NCI U24 CA126588, and NCI P30 CA068485.