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Abstract 
Previous studies have described models for transport of molecules for different sizes by diffusion or convection (1).  Interstitial fluid pressure (IFP) has been identified 
as a major obstacle in the uptake and distribution of different macromolecular agents used in in vivo anti-tumor therapies in solid tumors (2).  Here we present modeling 
of the IFP and demonstrate the correlation between different physiological properties of solid tumor and IFP.  Based on our model, we show that the hydraulic 
conductivity of the tissue has an important role on the IFP. This suggests that effective therapy of solid tumors requires a mechanism to exploit the hydraulic 
conductivity of the tumor and the surrounding tissue.   
THEORY 
Based on Starling’s hypothesis of volume flow of fluid, transvascular transport of fluid (filtration rate of plasma) is described by:  ܬ ൌ ୴݌ୡሺܣ୮ܮ െ ௜݌ െ ୴ߨሾ்ߪ െ       ୧ሿሻߨ
Where J is the volume flow across a vessel wall (m3/s), Lp the hydraulic conductivity of the microvascular wall (m2 s/kg), Ac the surface area of the vessel wall (m2), ݌୴ 
the vascular fluid pressure (Pa), ݌௜ represents IFP (Pa), ்ߪ the osmotic reflection coefficient, ߨ୧ the colloid-osmotic pressure of interstitial fluid (Pa), and ߨ୴ is the 
colloid-osmotic pressure of plasma (Pa) (2). Transport of fluid in an interstitial compartment steady laminar flow in a porous medium was modeled using Darcy’s Law 
and conservation of mass:  ݑሬԦ ൌ െ݌׏ܭԦ,     ׏ · ሬԦݑ ൌ ୴݌ୡሺܣ୮ܮ െ ௜݌ െ ୴ߨሾ்ߪ െ ୧ሿሻߨ െ ௜݌ୡሺܣ୮Lܮ െ Lሻ,     డ஼డ௧݌ ൅ ଵఝ ݑ · ܥ׏ ൌ ଶ׏ܦ ൅ ܲ ௌ௏ ൫ܥ௣ െ ൯ܥ ൅ ௃ೡ௏ ሺ1 െ   ௣ܥሻߪ
Where ݑሬԦ is the velocity vector (m/s) in ݌׏Ԧ the gradient of the pressure (Pa), K the tissue hydraulic conductivity of, A the surface area of the material through which fluid 
flows (m2), and ߤ is the viscosity of fluid (kg/m s) and LpL is the lymphatic hydraulic conductivity, and pL is the lymphatic pressure.  C is the interstitial concentration, 
Cp is the arterial input function, and φ is the porosity of the tissue. 
MATERIALS AND METHODS  
Prostate cancer patient was scanned at 3-T (GE, Waukesha WI, USA) before surgery. DCE-MRI was performed with 7 seconds temporal resolution using a T1-
weighted 2D fast spoiled gradient echo (FSPGR) sequence (TR/TE/α = 3.3 msec /1.6 msec /12°). Dynamic images were acquired for over 5.8 minutes after the Gd-
DTPA bolus injection (0.2 mmol/kg). Using the Tofts’ model, T1-weighted MR signal samples were fitted (3).  Maps of Ktrans and ve were generated (Fig. 1A).  Similar 
to Zhao et al, a 2D finite volume implementation of the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm was developed in Matlab and was 
used to simultaneously solve Darcy’s Law for the pressure, velocity, and conservation of mass for transient interstitial concentration (4).  Boundary conditions: డ௉డ௡ ൌ 0 , డ஼డ௡ ൌ 0; Initial Condition: ܥሺݔ, ,ݕ ௢ሻݐ ൌ 0.  A preconditioned conjugate gradient method was used in order to resolve the resulting linear system of equations.  Two 
tissue hydraulic conductivity cases were considered: 1) our system consists of a homogenous slab of tumor tissue surrounded by normal tissue as a system boundary 
with a constant hydraulic conductivity profile (Fig 1B); 2) our system consists of a slab of tumor (segmented using the pathology map) with a gradient (Gaussian 
shaped) scalar isotropic tissue hydraulic conductivity profile (Fig. 1C).  
RESULTS AND DISCUSSION 
Maps of the pressure field and velocity field were generated for the constant and gradient based scalar isotropic tissue hydraulic conductivity cases (Fig. 1).  For both, 

pressure maps indicate a high interstitial pressure within the tumor which generates an outwardly directed pressure source within the tumor core.  This is due to the 
presence of a pressure source (lack of lymphatics and drainage).  The magnitude of this source is inversely related to the tissue hydraulic conductivity. However, for the 
case with a tissue hydraulic conductivity gradient (lowest within tumor and outwardly increasing) the highest pressure region is more centrally located within the tumor 
and is outwardly decreasing.  This indicates a need to further investigate tissue hydraulic conductivity anisotropy using a tensor approach.  Corresponding velocity maps 
have the highest magnitude within the outer rim of the tumor where the pressure gradient is the highest.  The model is simplified and assumes that neighboring tumor 
tissue is homogeneous.  The porous media model will be refined and extended to account for realistic tissue heterogeneity using a stochastic partial differential equation 
approach.  
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Fig. 1: Mathematical modeling of effect of tissue hydraulic conductivity on interstitial fluid pressure (IFP) in solid tumors. (A) 
Pathology map, T2w image, Ktrans and ve based on Tofts model. (B) Constant hydraulic conductivity (K1) is assumed to be constant; 
corresponding IFP and uሬԦ map. (C) Hydraulic conductivity (K2) is derived from the segmented tumor convolved with Gaussian profile, 
G(x,y) with sigma = [4 4].
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