Measurement of elevated 2-hydroxyglutaric acid in brain tumors by difference editing at 3T in vivo
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INTRODUCTION Recent years have seen a resurgence of interest in the clinical potential of tumor metabolism. This interest stems from a number of seminal studies
documenting that the abnormal metabolic activities in tumors are driven by oncogenic mutations. A high fraction of gliomas contain mutations in isocitrate
dehydrogenase-1 and -2, IDH1 and IDH2 [1,2]. The mutations produce an “onco-metabolite”, 2-hydroxyglutaric acid (2HG) [3]. As a result, this metabolite, which is
normally present in vanishingly small quantities, can be elevated by orders of magnitude in gliomas bearing IDH1 or IDH2 mutations [3,4]. The studies indicated that
2HG is elevated mostly in low-grade gliomas and secondary glioblastomas (GBM), as measured by mass spectroscopy in vitro and ex-vivo. Therefore, noninvasive
methods for 2HG measures have outstanding potential and could allow the clinicians to predict tumor genetics, stage, and likelihood of therapeutic response. 2HG has
five non-exchangeable J-coupled protons [5], resonating at 4.02 (H2), 1.83 (H3), 1.98 (H3"), 2.22 (H4), and 2.27 (H4’), as shown in Fig. 1. Precise measurement of 2HG
by standard 'H-MRS may not be straightforward due to the spectral overlap with neighboring resonances. Here, we report in vivo measurement of 2HG in human brain
tumors for the first time, achieved by means of difference editing.

METHODS Single-voxel localized difference editing (MEGA) was employed for measurement of 2HG in brain tumors at 3T (Philips Medical Systems). The H2
resonance (4.02 ppm) was edited using a 20-ms Gaussian RF pulse (truncated at 10%; BW = 58 Hz), tuned to 1.9 ppm, for selective 180° rotation of the coupling
partners, H3 and H3’ resonances, Fig. 1. The editing RF pulses were switched on and off in alternate scans. Volume localization was obtained with a 9.8-ms 90° RF
pulse (BW = 4.2 KHz) and a 13.2-ms 180° RF pulse (BW = 1.3 KHz). Echo time was optimized to 106 ms, using density matrix simulations that incorporated the
shaped RF and gradient pulses. /n vivo data were obtained from patients with oligodendroglioma (low-grade) and primary GBM (high-grade). Written informed consent
was obtained prior to the scans. T,w-FLAIR images were acquired to identify tumor masses. Data were obtained from a 2x2x2 cm’® voxel, positioned within the
enhanced FLAIR regions. Data acquisition parameters included; TR = 2 s, sw = 2.5 KHz, 2048 sampling points, and 256 signal averages (scan time 8.5 min). An
unsuppressed water signal was recorded with a STEAM sequence (TE = 18 ms; TR = 20 s). In addition, a PRESS spectrum was acquired at TE = 97 ms for comparison.
Data were analyzed with LCModel, using basis sets calculated with published chemical shift and coupling constants [5,6]. Metabolite concentrations in tumors were
estimated using the STEAM water signal as a normalization reference and assuming a normal-brain creatine (Cr) level at 8 mM and identical relaxation times between
normal brain and tumors.

RESULTS and DISCUSSION For 2HG difference editing, the H2 resonance was chosen as a target since this resonance is weakly coupled (J = 4.6 and 8.4 Hz, with
d = 2 ppm) to the H3/H3’ resonances and the H3/H3’ resonances are additionally coupled to the H4/H4’
resonances, as shown in Fig. 1. The Cr-CH, resonance, the major obstacle in terms of signal intensity, was
eliminated via subtraction. The 4.1 ppm resonance of lactate (Lac) was canceled since its coupling partner at
1.31 ppm was unaffected by the editing 180° pulse (BW = 58 Hz). The NAAG 2.06 and 1.9 ppm resonances
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FIG. 3. Calculated spectra for MEGA edit-off
subscan (a), difference (b), and PRESS TE =
97 ms. Metabolites include 2HG (5mM), Glu (5
mM), GABA (1mM), Cr (8mM), NAA (10 mM),
NAAG (2mM), and Lac (1mM). Spectra are
broadened to singlet FWHM of 5 Hz.
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FIG. 2. Edit-off subspectra and difference spectra from a GBM (left) and a
oligodendroglioma (right) patients are shown together with the voxel positioning. Also, a
PRESS spectrum from the oligodendroglioma patient is shown at the bottom. Difference
spectra are 2-fold magnified. Vertical dotted lines are drawn at 4.02, 2.35 and 2.25 ppm.
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