

Optimized diffusion time for long-time-scale Helium-3 diffusion MRI

C. Wang¹, J. P. Mugler, III^{1,2}, E. E. de Lange¹, and T. A. Altes¹

¹Radiology, University of Virginia, Charlottesville, VA, United States, ²Biomedical Engineering, University of Virginia, Charlottesville, VA, United States

Introduction: Hyperpolarized (HP) ^3He diffusion MRI measures the degree to which diffusion-driven displacement of inhaled gases molecules is restricted by the walls of the airspaces of the lung, from which information about lung microstructure can be derived (1-4). HP ^3He diffusion MRI has been implemented at two diffusion-time regimes: the short-time scale ($\sim\text{ms}$) and the long-time-scale ($\sim\text{s}$) (1-4). Long-time-scale diffusion results in ADC values that are roughly an order of magnitude smaller than those for the short-time scale (1-4). Despite the previous success of long-time-scale diffusion MRI using ^3He , imaging parameters for this technique were never optimized and as a result research teams have used a variety of different parameters. The purpose of this work is to determine the diffusion time for long-time-scale ^3He diffusion MRI which has the best ability to discriminate healthy from COPD subjects.

Methods: A series of global apparent diffusion coefficient (ADC) values (i.e., integrated over the entire lung) were measured at diffusion times ranging from about 0.1 to 2.0 seconds using a stimulated-echo-based method with diffusion sensitization in the anterior-posterior direction (1). The pulse sequence is described in ref. 1. ^3He was polarized to $\sim 30\%$ by the collisional spin-exchange technique using a commercial system (Model 9600, MITI). The measurements were obtained from all subjects at breath hold following inhalation of 50 ml ^3He mixed with 950 ml N_2 . The tag wavelength was 10 mm. Scanner: 1.5T scanner (Sonata, Siemens); Subjects: 29 healthy volunteers (Age: 57 ± 9 ; 12M, 17F) and 14 subjects with COPD (Age: 65 ± 6 ; 5M, 9F). The ^3He ADC values for each subject and the percentage difference in group mean ADC were calculated.

Figure 1. ^3He ADC versus diffusion time for (a) 29 healthy subjects and (b) 14 subjects with COPD. (c) Percentage difference of the mean ADC between the COPD and healthy groups versus diffusion time.

Results: According to classical diffusion theory, long-time scale diffusion is expected to be more sensitive to alterations in collateral channel density than short-time scale diffusion since gas atoms have more time in which to explore the lung and potentially pass through a collateral channel. HP ^3He long-time scale ADC versus diffusion time curves for 29 healthy subjects and 14 subjects with COPD (Figures 1a, 1b) show a clear separation between these two groups. The percentage difference in group mean ADC versus diffusion time (Figure 1c) has a well-defined maximum at a diffusion time of approximately 1 s, suggesting that for ^3He this diffusion time affords the best ability to discriminate COPD subjects from healthy subjects. Furthermore, the percentage difference between the two groups at the long-time scale (110%-150%, Figure 1c) is much greater than that found at the short-time-scale (commonly 20%-100%), which supports the premise that long-time scale diffusion is more sensitive to COPD than short-time scale diffusion.

Conclusion: The global pulse sequence offers a simple method to optimize diffusion time at the long-time-scale for ^3He diffusion MRI. These results suggest that, for a tag wavelength of 10 mm, a diffusion time of 1.0 s affords the best ability to discriminate COPD and healthy subjects.

References:

[1] Wang C, et al. Magn Reson Med 2006; 56:296-309. [2] Woods JC, et al. Magn Reson Med 2004; 51:1002-1008.
[3] Conradi MS, et al. Acad Radio 2008;15(6):675-682. [4] Salerno M, et al. Radiology 2002;222:252-260.

Acknowledgements: Supported by NIH grant R01 HL079077, Flight Attendant Medical Research Institute and Siemens Medical Solutions.