

Interleaved T1- and T2*-mapping for Dynamic Abdominal Tissue Oxygenation Applications

Y. Ding¹, Q. Yuan², R. R. Hallac¹, R. P. Mason², R. W. McColl², R. D. Sims², and P. T. Weatherall²

¹Radiological sciences graduate program, UT southwestern medical center at dallas, Dallas, TX, United States, ²Radiology, UT southwestern medical center at dallas, Dallas, TX, United States

Introduction: MR relaxation time mapping has been used for the assessment of oxygenation in brain [1], abdominal organs [2] and tumors [3] by measuring relaxation time changes due to paramagnetic T₁-shortening properties of molecular O₂ in tissue (TOLD) and susceptibility-related T₂* increasing created by decreased concentration of deoxyhemoglobin (paramagnetic) in blood (BOLD) upon breathing 100% O₂. MR sequences for the simultaneous acquisition of T₁ and T₂* maps were developed and applied for brain functional applications [4]. However, these techniques are severely hindered when used of assessment of abdominal organs due to respiration motion and severe local susceptibility in the dynamic abdominal organ oxygenation study. Therefore, a 2D, respiratory-triggered, free-breathing, dynamic, interleaved T₁ and T₂* mapping technique has been developed and tested in the present study.

Methods: Using PARADISE (Pulse programming environment for scientists) on a clinical 3T MRI system (Philips Achieva, Best, Netherlands), a dynamic multi-shot gradient echo EPI sequence (ms-GEPI) with presaturation pulse for fat-suppression was modified by adding a 180° adiabatic inversion recovery (IR) prepulse in even segments and four more EPI echoes in non-IR (odd) segments. The respiratory motion compensation was accomplished with standard bellows triggering and by acquiring all image data at the same phase of expiration. T₁ measurement was accomplished by using signals of the first echo in even and odd segments with constant

TR and TE. The ratio of these two signal intensities is solely a function of T₁: $\frac{S_{IR,even}}{S_{GE,odd}} = \frac{1-2e^{-\frac{TR}{T_1}} + e^{-\frac{TR}{T_1}}}{1-e^{-\frac{TR}{T_1}}}$ (1), and T₁ value can be derived iteratively [5]. T₂* was calculated by fitting five echo signals in the non-IR (odd) segment to an exponential decay: $\ln \frac{S_{GE}}{M_0} = -TE/T_2^*$ (2).

Gadolinium solution phantoms were used to compare T₁ and T₂* values measured by the interleaved ms-GEPI-IREPI method and conventional IR-TSE and multi-echo GRE techniques. The interleaved ms-GEPI-IREPI technique was also applied to acquire human abdominal imaging data from 5 healthy volunteers in the coronal plane (2D, TR=3~5sec, TI=1.2sec, 5 echoes, matrix 128×128, spatial resolution 2.0×2.0×4 mm³, temporal resolution ~24sec, SENSE 2.0, TE₁=7.4ms, ΔTE=9.5ms, ETL=9, SENSE Torso coil). All volunteers (N=5) breathed room air (4min) followed by 100% oxygen (8min). Dynamic T₁ and T₂* values of abdominal organs were calculated pixel-by-pixel using equations 1 & 2.

Results and Discussion: The results of phantom experiments show good correlation of T₁ and T₂* values measured by interleaved ms-GEPI-IREPI and conventional sequences (Table 1). For the volunteer study the relaxation times of abdominal organs were measured before and during oxygen inhalation (Table 2). To analyze the tissue oxygenation effect, regions of interest (ROI) in different organs were chosen and selected R₁ and R₂* maps during air and oxygen inhalation are presented in Fig. 1. A significant decrease in T₁ was observed in spleen ($p=0.004$) and renal cortex ($p=0.07$) and no T₁ signal change was detected in paraspinal muscle and renal medulla when breathing 100% oxygen. Meanwhile, no significant change of T₂* was seen for any organs in response to breathing oxygen.

Phantom	T ₁ (IR-TSE) [ms]	T ₁ (interleaved) [ms]	Diff. T ₁ [%]	T ₂ * (multi-echo GRE) [ms]	T ₂ * (interleaved) [ms]	Diff. T ₂ * [%]
1	365±7	375±13	2.7	89±2	94±5	5.6
2	704±13	675±32	-4.1	113±3	109±7	-3.5
3	1089±19	1029±49	-5.5	131±3	141±9	7.6

Table 1: T₁ and T₂* relaxation times measured in phantoms.

Organ	Mean T ₁ (air)	Mean T ₁ (O ₂)	Mean T ₂ * (air)	Mean T ₂ * (O ₂)
Spleen	1315 ± 42	1196 ± 38	39 ± 4	38 ± 5
R. cortex	1218 ± 65	1105 ± 59	63 ± 17	61 ± 15
R. medulla	1511 ± 72	1521 ± 75	38 ± 11	41 ± 12
Paraspinal m.	915 ± 26	902 ± 31	25 ± 3	24 ± 4

Table 2: T₁ and T₂* relaxation times of abdominal organs measured in air and O₂ inhalation.

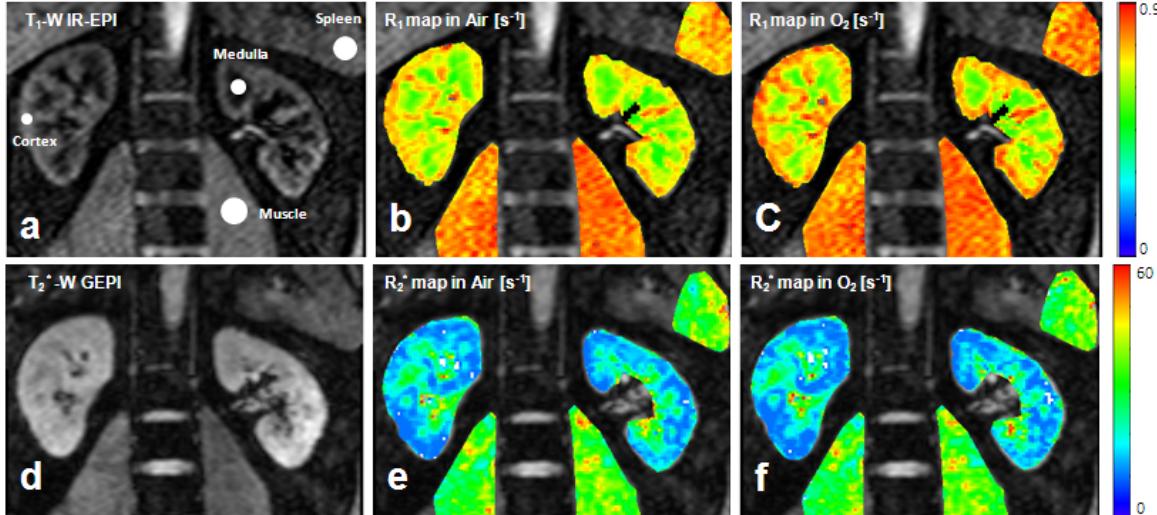


Figure 1: Example of oxygen-induced changes in R₁ and R₂* in a healthy volunteer. The T₁-weighted image (a) and the T₂*-weighted image (d) demonstrate the normal anatomy of the abdominal organs. Compared to the R₁ maps acquired while breathing air (b), a significant increase in R₁ value is seen in spleen and renal cortex when pure O₂ is inhaled (c). R₂* maps appear near-identical when breathing air (e) and 100% O₂ (f).

Conclusion: The free breathing respiratory-triggered interleaved T₁ and T₂* mapping sequence was developed and applied to acquire quantitative relaxation time maps of abdominal organs in a dynamic scan without the need for image registration. Compared to traditional tissue oxygenation methods which only acquire one parameter in a dynamic study, this technique is a more efficient method which enables simultaneous monitoring of both tissue and blood dynamic oxygenation processes. While abdominal organs are used here as an example, this method can be more easily performed on oncology patients, many of whom have difficulty cooperating for long exams.

Acknowledgements: This work was supported in part by The Mary Kay Ash Foundation

References: [1] Remmeli, S, et al, ISMRM 18, 2010; [2] O'Connor, JPB et al, MRM 61, p.75-83, 2009; [3] Rijpkema, M, et al, Int. J. Rad. Onc. Biol. Phys. 53, 2002; [4] Stehning, C, et al, ISMRM 16, 2008; [5] Zaharchuk, G, et al, MRM 54:113-121, 2005