

Turbo Spin Echo Bloch Siegert Shift B_1^+ Mapping

T. C. Basse-Lüsebrink¹, V. Sturm¹, T. Kampf¹, G. Stoll², and P. M. Jakob¹

¹Experimental Physics 5, University of Wuerzburg, Wuerzburg, Bavaria, Germany, ²Neurology, University of Wuerzburg, Wuerzburg, Bavaria, Germany

Introduction

An interesting method for B_1^+ mapping based on the Bloch-Siegert (BLS) shift was recently presented (1,2) for gradient echo (FLASH) and Spin Echo (SE) sequences. This method uses off-resonant pulses before signal acquisition to encode the B_1 information into the signal phase. Fast B_1^+ mapping is possible since the repetition time has only minor influence on the quality of the phase information. In the present study, the use of BLS B_1^+ mapping was extended to CPMG-based Turbo-Spin-Echo (BLS-CPMG-TSE) imaging. For fast B_1^+ mapping phantom as well as *in vivo* 2D and 3D experiments were performed to evaluate the proposed method.

Theory

To encode the B_1^+ information into the signal phase, an initial off-resonant BLS pulse was applied between the 90° and the first 180° pulse (Fig.1a). To fulfill CPMG conditions in a TSE experiment, the same phase conditions must be present before every refocusing pulse (3). Therefore, a BLS pulse was introduced after each refocusing pulse with the same off-resonance as the initial BLS pulse. Furthermore, the power of these subsequent BLS pulses was increased to $\sqrt{2}$ times the power of the first pulse (Fig.1a/b). This was done in order to restore CPMG conditions since the phase shift introduced by the BLS pulse is proportional to the square of the B_1 field (1,2).

Materials and Methods

BLS sequences were implemented on a 7T small animal scanner. All BLS experiments contained standard Gaussian-shaped off-resonant pulses. The BLS pulse duration (BS_{dur}) was set to 1ms. For all BLS experiments, two acquisitions with $\omega_{off} = +16\text{kHz}$ and $\omega_{off} = -16\text{kHz}$ were performed. All B_1^+ maps were calculated using the equations given in (1).

For 2D multi-slice *ex vivo* TSE experiments, the FOV included the total volume of the coil (Parameters: TE/TR = 10/30000ms; MTX = 128x128; FOV = 30x30mm²; slices = 30; ST = 2mm). Linear and centric encoding as well as three different turbofactors (TF = 8, 16, 32) were used. For comparison, a multi-slice BLS-SE experiment with TR = 3750ms was performed as described in (1).

For *in vivo* experiments, one mouse was anesthetized with 1.5% isoflurane in a 2 L/min oxygen atmosphere. 3D TSE experiments were performed using the same BLS parameters as in the *ex vivo* experiments (Parameters: TR = 1000ms; FOV = (15x30x30)mm; MTX = 15x128x128; TF = 8, 16, 32). For comparison, SE experiments were performed. The animal experiments were performed in accordance with institutional guidelines and approved by Bavarian state authorities.

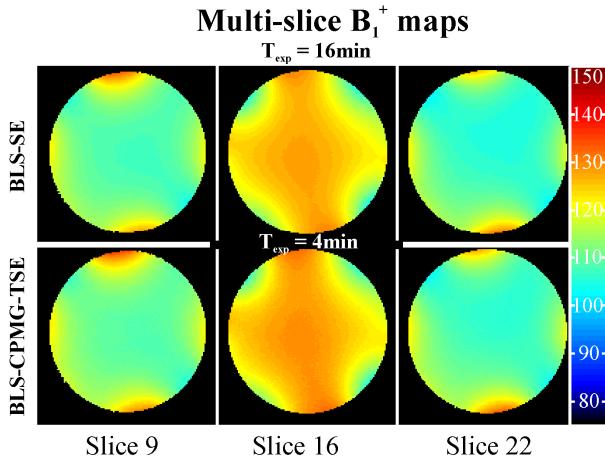


Fig.2) *Ex vivo* phantom results. Upper row: B_1^+ maps calculated from data obtained with a multi-slice BLS-SE sequence. Lower row: B_1^+ maps calculated from data obtained with the proposed multi-slice BLS-CPMG-TSE sequence. Both methods achieved excellent correlation; however, the BLS-CPMG-TSE sequence was acquired 4 times faster.

Results

Fig.2 shows the phantom experiment results. The B_1^+ values obtained from the BLS-SE experiment were in close agreement with the results from the BLS-CPMG-TSE sequence. Fig.3 shows good agreement between *in vivo* B_1^+ maps calculated from data obtained with a 3D BLS-SE sequence (Fig.3a) and a 3D BLS-CPMG-TSE sequence (Fig.3b).

Discussion and Conclusion

Using BLS-CPMG-TSE sequences decreased measurement time compared to BLS-Spin Echo was possible. This enabled fast acquisition of B_1^+ information. Furthermore, applying BLS-based spin-echo techniques minimized the influence of T_2^* effects, which are critical for gradient echo-based BLS methods at high field strengths. TSE-based BLS B_1^+ methods enable fast B_1^+ mapping although they intrinsically have high specific absorption rates (SAR). Thus, this technique is especially applicable for phantom and animal studies at high field strengths.

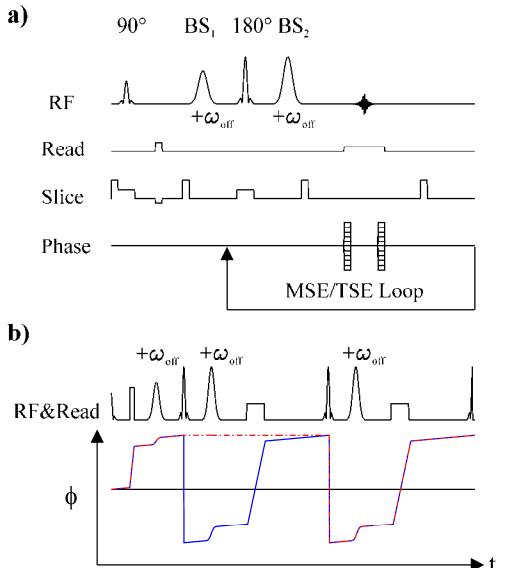


Fig.1a) Sequence diagram of the BLS-CPMG-TSE sequence. To obtain CPMG conditions the second BLS pulse used the same off-resonance frequency as the first BLS pulse to the power of $\sqrt{2}$. b) Simplified phase graph showing the phase coherency obtained from the primary echo pathway (blue) and the stimulated echo pathway (red, dashed).

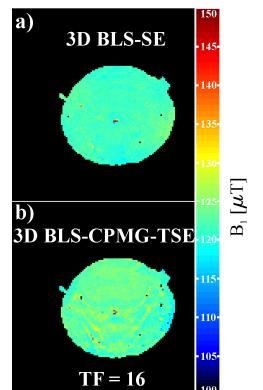


Fig.3) *In vivo* B_1^+ maps. a) B_1^+ map obtained with a 3D BLS-SE sequence. b) B_1^+ map obtained with a 3D BLS-CPMG-TSE sequence. The same image plane is shown

References

[1] Sacolick LI et al., Magn. Reson. Med. (2010);63:1315-1322
[3] Hennig J, et al. Magn. Reson. Med. (1986);3:823-833

Acknowledgements

This work was supported by the DFG SFB 630 (C2); SFB 688 (B1,B5,Z2); and the IZKF Würzburg project F-25.