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Introduction Saturation pulses rf(t) are essential to many imaging applications [1-3].

passband and sharp profile with minimum peak rf(¢) amplitude.

tolerances and time-bandwidth product tb
the parameters above as input.
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Criteria for desirable saturation profile |M.| are flat
Design parameters for RF pulses include passband §; and stopband 2 ripple

[1]. The well-known Shinnar-Le Roux (SLR) RF pulse design technique is a transform that relates
magnetization profile to two polynomials Ay and By [4-6]. By has been obtained, in the past, by traditional digital filter design techniques using

determines a By yielding the global minimum peak rf(t) amplitude.

Methods For saturation pulses, the RF pulse rf(t) and polynomial By are essentially the same.

A conventional approach (for minimum-peak rf(¢)) is to design a maximum-phase polynomial By , factor By
to obtain its roots, then combinatorially search by root inversion [7] over all possible phase patterns.
18 before number of combinations becomes prohibitive.

But this conventional method is limited

For tb well in excess of that, we propose a novel Optimization technique that

We first use Optimization to generate a

minimum peak By, then the saturation profile |M;| and RF pulse rf(¢t) are found via SLR transform as in the conventional method. We want
to find a minimum peak amplitude By whose frequency response H(w) satisfies design specifications, as formulated in Eq.1. But this problem

statement is nonconvex (i.e. solution not necessarily globally optimal). So instead, define an autocorrelation matrix of By as G2 B NB]}\I,
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where G is positive semidefinite with rank 1. Summing along each of 2N —1 subdiagonals produces entries of the autocorrelation function r of By ,

N .
where r £ 1o + i i € CN

equivalent to minimizing ||diag(G)||ec . Define In2 I and define I, as a zero matrix having vector 1 along the n
subdiagonal when n is negative. By spectral factorization [8], R(w)=|H(w)|?, an equivalent problem is expressed in Eq.2.
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Fig.1 (a) Relationship of parameters used in optimization: Autocorrelation matrix G com-
posed of columns of By whose peak amplitude is being minimized. Summing each 2N —1
subdiagonals of G (main diagonal shown in red) gives autocorrelation function » whose mag-
nitude spectrum satisfies design specifications. Optimized By gives saturation profile |Mz|

via SLR transform. (b) Main diagonal of

autocorrelation matrix G (highlighted in red) is

the Hadamard product of polynomial By. First column of G is By scaled by By (0).

minimize  ||Bn|loo

subject to 1—061 < |Hw)| <1481, w € [0,wp]
[H(w)| < 62,

Eq.1

minimizeg ,,» [|diag(G)||oo
subject to

Eq.2 R(w) <62, tw € [ws, 7]
R(w) >0, w € [—m, 7
r(n) = trace(IL G), n=0...N—1
Gro0
rank(G) =1

w € |ws, 7]

R(w) = rre(0) + 2 Z re{r(n)e=7%n}
(1-61)2<Rw)<(1 + 51)2 w € [—wp , wp]
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. In particular, the main diagonal of G holds squared absolute entries of By (Fig.1). Minimizing ||By||co is therefore

th superdiagonal when n is positive
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Fig.2 rf(t) are shown in left and their corresponding
|M| are shown in right.
tb = 14. Bottom row represents tb = 32.

Top row corresponds to

Excepting the rank constraint, this problem is convex; this means, it is numerically
solvable for its global minimum by prevalent and readily available software programs.
The rank constraint is met via method of convex iteration. Polynomial By is taken

from the first column of G. Having By, the RF waveform rf(t) is found by SLR
transform. We use our optimization to design a saturation pulse with tb=14 and

then compare peak RF amplitude with those from a maximum-phase design with and
without combinatorial search of all root inversion. We show another example of a large
time-bandwidth design (tb=32) for which it is not practical to obtain minimum peak

RF amplitude by root inversion.

Results Figure 2 (left) shows RF waveforms rf(t) from the optimization (red), and
maximum-phase design with (blue) and without (black) root inversion. The design pa-
rameters are: tb=14 (pulse duration =4ms), 61 =2%, 62=0.1%. Figure 2 (right) shows
their corresponding |M|, where |M,|=1 — 2|3|? and $ is the Cayley-Klein parameter

obtained from SLR transform. All three designs meet specifications, while the optimiza-
tion technique has lowest peak RF amplitude.

Discussion We presented a method to design an RF saturation pulse with globally minimum peak RF power without the need for exhaustive
root-inversion search. For saturation RF pulses (7f(t) =~ By ), minimum peak rf(¢) can be obtained by Convex Optimization for which the objective
is to find a By having the lowest possible peak amplitude while simultaneously satisfying the given filter design parameters. Instead of working
directly with impulse response, our technique employs its autocorrelation and imposes a rank constraint on the autocorrelation matrix G. The main

diagonal of G is [Bn(0)Bn(0)H, By(1)By(1)H,--]T.

Minimizing ||By||oo is therefore equivalent to minimizing ||diag(G)||oo -

Once the program

has achieved global minimum, By can be extracted from the first column of G. Columns of autocorrelation matrix G are simply copies of By
having different scale factors; consequently, rank(G)=1. But a rank constraint is not convex. We overcome this by using the method of convex
iteration. The number of iterations varies but total computation time is usually on the order of minutes in Matlab. Since RF power is directly
related to SAR safety limits, this method is most relevant in high field applications and large time-bandwidth-product designs. Possible applications
include TOF (selective arterial or venous imaging), outer volume suppression pulses, spectral saturation/supression.
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