## L.K.Tam1, J.P.Stockmann1, G.Galiana2, and R.T.Constable 1,2

IB iomedical Engineering, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, Yale University, New Haven, Connecticut, United States, 2 Diagnostic Radiology & Neurosurgery, New Haven, Connecticut, New Haven, Connecticut, New Haven, Connecticut, Connecticu

**Introduction**: Null Space Imaging (NSI) utilizes higher-order gradients for spatial encoding that are tailored to complement the receiver coil spatial information in order to maximize data efficiency to allow high acceleration factors. Another acceleration technique, compressed sensing (CS), exploits assumed sparsity of MR images in the wavelet domain by sampling k-space in a random density-compensated manner and applying a non-linear reconstruction algorithm. Both NSI and CS focus on collecting data in a targeted manner. Previous work with orthogonal multi-polar gradients demonstrated parallel CS with non-linear gradients, albeit with artifacts particular to the imaging method. Since CS effectively dampens coherent aliasing, we hypothesized that when CS is applied to NSI it would efficiently reduce aliasing artifacts and spread residual artifacts more incoherently than comparably undersampled k-space trajectories using only linear gradients. Therefore, the current work proposes a synergistic NSI CS with total variation (TV) constraint approach for suppression of parallel imaging artifacts at high acceleration factors.

**Method**: Sparsity theory dictates it is possible to reconstruct an image represented by an n-dimensional complex vector  $\mathbf{x}$  that is sparse in a transform domain.<sup>4</sup> In both the CS and NSI approach, the imaging system may be treated as an equation  $\mathbf{y} = \mathbf{A}\mathbf{x}$ , and reconstruction proceeds from the same theoretical base. In any parallel imaging CS approach, the additional  $n_c$  factor of data collected from the parallel receive coils better conditions the inversion of the encoding matrix  $\mathbf{A}$ . NSI converges on the solution through the Kaczmarz iterative algebraic projection reconstruction algorithm.<sup>5</sup> The CS approach proceeds through a L1-penalized norm non-linear conjugate gradients (nlCG) solution of the convex minimization problem: Phi( $\mathbf{x} = \|\mathbf{A} + \mathbf{W} \|^2 + \lambda_1 \|^2 + \lambda_2 \|^2 + \lambda_2 \|^2 + \lambda_1 \|^2 + \lambda_2 \|^2 +$ 

Phantom CS Parallel Parallel CS

Random Radial

NSI

**Figure 2.** Comparison of compressed sensing, parallel, and compressed sensing parallel simulations at R = 16.

g system may be
In any parallel ther conditions the terative algebraic norm non-linear  $|x-y||^2 + \lambda_1 * |x|_1 + |x|_1 + |x|_2 + |x|_3 + |x|_4 + |x|_4 + |x|_4 + |x|_5 + |x|_$ 

Figure 1a. Eight element

microstrip array coil

Figure 1b. In NSI, imaging gradients are tailored to receive coil profiles and approximated with spherical harmonics

readout was simulated at Ns = 512 which required proportionally increasing the gradient strength at fixed sampling window as per the Nyquist sampling theorem. Extra encoding is provided along the variation of each gradient shape. Whole body noise was injected at 5% at the Ns=128 level and then scaled up by the root of the sampling factor, eg. 10% noise fraction for a 512 samples per readout acquisition. The receiver coils are simulated from a microstrip array coil. Simulations were compared via sum-of-squares error (SSE).

Results: Reconstructed 2-D images compare NSI, random

non-degenerate in-plane

spherical harmonics form

the gradient shapes. The

number of samples per

parallel radial, and random variable density k-space phase encodes on a brain phantom and numerical phantom at an acceleration of R=16. The simulations demonstrate that CS-NSI reduces the SSE compared to the other methods. With the random angle parallel radial acquisition scheme, the compression algorithm does not fully recover features, and a blur is observed. The lower SSE of the NSI method manifests as a reduced granularity and blur.

**Discussion**: CS and NSI are complementary methods that allow further accelerations in parallel imaging. NSI, which utilizes imaging gradient complementarity with receiver coil sensitivity profiles and CS, which relies on sparsity, are methods which collect data more efficiently and disperse residual aliasing artifacts making them less apparent. Current challenges for such an approach include calibration of experimental imaging gradients and parallelized GPU implementation of image reconstruction, both of which are currently underway.

References: <sup>1</sup>Stockmann et. al. Magn Reson Med. 2010. 64: p. 447-456. <sup>2</sup>Tam L.K.., et al., Proc. Intl. Soc. Magn. Reson. Med., 2010, p.2868. <sup>3</sup> Lin F-H. et. al. Proc. Intl. Soc. Magn. Reson. Med., 2010, p.546. <sup>4</sup>Candes E, et. al. IEEE Trans Inf Theory 2006;52:489–509. <sup>5</sup>Herman G.T. et. al. J. Theor. Biol. 42:1. <sup>6</sup>Lustig M., et al. Magn Reson Med. 2007. 58: p. 1182-1195. <sup>7</sup>Lee, RF, et. al. Magn. Reson. Med 2004; 51:172. **Acknowledgements**: This work supported by NIH BRP R01 EB012289-01 and a NSF Graduate Research Fellowship.