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Fourier transform
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INTRODUCTION: Previous work has shown that scalable reconstructions can be obtained by pulsing a “phase-scrambling” quadratic gradient field prior to readout.
Variable-FOV reconstructions have been achieved by means of the Frensel transform [1], [2] as well as the chirp-z transform [3]. This permits reconstruction of alias-
free images from undersampled data, albeit with the final resolution limited by the number of acquired k-space points. In this work, we show that phase-scrambled
MR data can be described as a mapping of the object known as a fractional Fourier transform (FrFT), a tool with a growing body of applications in optics and signal
processing. We show the mathematical equivalence of the FrFT and Fresnel transform approaches. We then demonstrate scalable FrFT reconstructions with MR
data acquired using a powerful, imaging-grade quadratic gradient insert coil applied before the readout.
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operator known as the linear canonical transform (LCT), which is completely specified by the parameters a, b, ¢, and d (1). The LCT causes an affine transformation of
the operand in time-frequency space. Its parameters are described by a 2x2 “ABCD” unit-determinant matrix with the fundamental property that the parameter
matrix of a compound LCT is the product of the matrices of the component LCTs. The FrFT takes the form of a rotation matrix whose angle « is related to the
fractional order a=2 ¢/ 7, repeating modulo 27 or 2, respectively. At &=0 the FrFT reduces to the identity operator, while at oz= 72 it becomes the Fourier transform
(eq. (2)). The Fresnel transform, which in optics describes wavefront propagation through free space, can be described as the convolution of the object (or light
source) with a quadratic “chirp” integral kernel, shown in eq. (3).
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transform, and a second chirp multiplication (eq. (6)). The phase-scrambled signal in eq. (7) can be put j - L 7
into the form of the FrFT through chirp multiplication, shown in eq. (8), where zand pare set (eq. (9)) to | S(K(1)) =] exp (_12”(k(t)l‘ T ))f (u) du
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changed to exp(iﬁ[)’cot(ot)pz). To then reconstruct a properly “focused” image, a FrFT of new angle o (eq. o = cot"(ﬂcot(a)) (10)
(10)) must be performed. Setting £ > 1 results in less quadratic phase across f(0), essentially “tricking”
the FrFT into reconstructing the object within a larger FOV.

METHODS: Phase-scrambled data in the axial plane were acquired on a 3T Siemens Trio scanner using a FLASH sequence with additional TTL pulse triggers for
switching a Z2 gradient insert, whose field varies as —=(X’+Y?) in the imaged plane. The Z2 gradient was pulsed for 150 s in between slice selection and readout. The
quadratic gradient strength was set high enough to permit scaling but not so high as to cause intravoxel dephasing near the periphery. Scaled images were
reconstructed using a chirp multiplication and subsequent FrFT of the appropriate order. A fast FrFT algorithm in MATLAB was used to perform the discrete FrFT [6].
RESULTS: Phase-scrambled signals show the expected spectral dilation.
Qualitatively this results from a convolution of the quadratic chirp with the
object, the linear gradients steering the quadratic function across the FOV.
Alias-free “zoomed out” magnitude images are obtained using o as
specified in eq. (10). While previous scalable reconstructions [2] were
limited to the use of second-order shim coils, leading to long TE times, we
demonstrate using a powerful Z2 coil that scaling is possible using short
pulses that can be readily incorporated into any pulse sequence.
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