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Introduction: The synthesis of compressed sensing (CS) [1,2] and parallel imaging bears considerable potential for highly accelerated MR imaging.
Several publications [3-6] have proposed a combination of SENSE and CS as an iterative sparsity-constrained SENSE reconstruction using variable
density random sampling. The two-step method proposed by Liang et al. [7], which first performs CS to obtain aliased images and then applies
Cartesian SENSE to obtain the final image, shows improved results compared with other methods. However, in this method, the intermediate aliased
images exhibit reduced sparsity, compromising the CS reconstruction. Furthermore, potential errors in the CS reconstruction can be amplified in the
SENSE reconstruction, especially in areas of high g-factors. In this work, we propose a two-step
CS-SENSE reconstruction, in which the two reconstruction steps are used to recover distinct parts
of k-space data and apply a two-level variable density sampling pattern.

Methods: CS and SENSE rely on different scan acceleration principles and apply different
sampling patterns. CS exploits signal sparsity and requires incoherent sampling pattern. In SENSE,
the acceleration is determined by the properties of the coil array and uniform sampling is usually
employed. Several different sampling patterns (Poisson disk [8], golden ratio [9], and Halton
sampling [10]) have been proposed as a compromise between uniform and random sampling for a
CS-SENSE reconstruction, usually in combination with variable density sampling. However, this
compromise is not necessarily optimal.

CS-MRI usually exploits image sparsity in the wavelet domain. However, the sparsity is not the
same at all wavelet scales. Typically, the coarse scale wavelet coefficients (low frequencies) contain
most of the signal energy and are much denser than fine scale coefficients. In terms of k-space, the
center corresponds to a dense image, which contains most of the signal energy, and the periphery is
the source of sparsity. This prior knowledge is usually exploited using variable density sampling, in

wavelets

which the central k-space is fully or almost fully sampled and the periphery is randomly center periphery
undersampled. Thus, CS exploits mostly the sparsity of the high frequency data. SENSE, on the —
other hand, relies on low resolution coil sensitivity information, which is acquired in a reference —
scan. Thus, the limited resolution of the coil sensitivity information may cause errors in the *=
reconstruction of high frequency information. However, SENSE can be applied to accelerate the —
central k-space. .

uniform random

Based on these observations, we propose a hybrid, two-level sampling scheme (Fig.1). The central
part of k-space is uniformly undersampled by a factor determined by the coil geometry. The Figure 1. The correspondence between sparsity
periphery is pseudo-randomly undersampled with a higher undersampling factor. and k-space location and the proposed samp-
The following two-step reconstruction is applied. First, the missing data in the k-space center are /ing are schematically shown. The high frequen-
recovered using SENSE. Then, the high resolution data are recovered in an iterative CS ¢V part is very sparse, which is favorable for

reconstruction by solving the constrained optimization problem: CS. Undersampling in the low frequency part,
2 which is dense, can be achieved by SENSE.
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where F, is the undersampled Fourier transform, y; and S; are the R= 1 2.5 3.3 4.2
k-space data and the coil sensitivity for a coil i, and ¥ is the
sparsifying transform. In this second step, only the high resolution
data are updated. Splitting the reconstruction in two sub-problems
has the advantage that each of the sub-problems is better
conditioned than a combined CS-SENSE reconstruction, in which
CS and SENSE are performed simultaneously on the complete data.
Results: Phantom and in vivo data were acquired on a 1.5T clinical
scanner (Philips Healthcare, Best, The Netherlands) using an 8
element head coil. The following parameters were used: 1) phantom
TE/TR = 5/1000ms, FOV = 250mm? 256x256 matrix and 2) in-
vivo TE = 20ms TR = 500ms, FOV = 250mm’, 256x256 matrix.
Coil sensitivities were obtained from a separate reference scan. Full
data sets were acquired and retrospectively undersampled
according to the proposed two-level sampling scheme. The central
32 phase encoding lines were uniformly undersampled with a
reduction factor of 2. The k-space periphery was randomly
undersampled using Poisson disk sampling. Figure 2. CS-SENSE two step reconstruction. Reconstruction results for the phantom

Images were reconstructed with the two-step CS-SENSE applying and in-vivo data are shown for full sampling (R=1) and undersampling factors of 2.5,
Daubechies 4 wavelets in step 2 of the algorithm. Reconstruction 3.4 and 4.2. No aliasing artifacts are visible. that would be present in SENSE at R >2

results for different undersampling factors are shown in Fig. 2. The reconstruction time was 23s (30 iterations) for the brain data and 39s for the
phantom (2.2 GHz CPU, 2GB memory, Matlab). Very good image quality was obtained for both the phantom and in vivo data even at acceleration
factor of 4.2. In comparison, using SENSE-only reconstruction shows artifacts for acceleration factor greater than 2.

Conclusion: A novel method for CS-SENSE reconstruction is proposed, which applies two-level sampling pattern, motivated by the different
mechanisms for scan acceleration in CS and SENSE. The two-step reconstruction results in improved conditioning of the reconstruction problem and
avoids error propagation between the two reconstruction steps.
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