SpRING: Sparse Reconstruction of Images using the Nullspace method and GRAPPA
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Introduction
Accelerated parallel imaging methods like GRAPPA [1] leverage spatial weighting across coil sensitivities to undo coherent aliasing in undersampled data, at the
expense of noise amplification. Compressed sensing (CS) [2-4] relies on incoherent sampling and nonlinear processing to reconstruct an image, at the expense of
losing non-sparse details. Algorithms in [5-7] combine parallel imaging with CS to reconstruct high-SNR, approximately sparse images from undersampled data.
The method presented in [5] is improved using the mixed £1/£2-norm simultaneous sparsity (over P coils) penalty function ||w|ls = >» [|[wn,1, ..., waF]||l2 and the LSMR
method [8] for solving least-squares problems, resulting in Sparse Reconstruction of Images using the Nullspace method and GRAPPA (SpRING). The g-factors
factors, derived analytically for GRAPPA in [9], are computed empirically for GRAPPA, CS, and SpRING using the pseudo multiple replica method in [10].

Theory

Given undersampled k-space data d and GRAPPA reconstructed k-space W(d), SpRING consists of finding the missing data x that minimizes ||diag(C1, ..., Cp)
FA(KTd+(K)Tx-W(d))||2 + A|WF(KTd + (K%)TX)||s. Here, F1is the inverse DFT, [Cy, ..., Cp] are coil combination weights, K and K¢ select the undersampled and
missing k-space, respectively, and ¥ is the sparsifying transform. This method operates in the nullspace of the acquired data selection matrix K, guaranteeing the
acquired data is preserved. The tuning parameter A trades fidelity to the GRAPPA reconstruction for sparsity. The coil combination weights are computed from low-
resolution estimates of the coil sensitivities (S1, ..., Sp) using the coil noise covariance matrix A: [Ci(X,Y,2), ..., Cr(X,y,2)] = PINV(AYS1(X,y,2), ..., SP(X.y,Z)])A2,
where pinv() is the left pseudo-inverse. ‘

Methods

The coil noise covariance matrix is measured from
noise-only acquisitions, in which no excitation is
applied, and the receivers sample thermal noise.
The reference data is acquired with an un-
accelerated T1-weighted MPRAGE (256x256x176
sagittal slices, 1.0 mm isotropic resolution) using a
Siemens 32-channel head coil on a Siemens Trio
3T scanner. The data is split into axial slices, and
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each slice is cropped individually. The 250x170 RMSE =0.04302  RMSE = 0.07457 1= 1002 1= 1026
cropped slice shown is uniformly undersampled by ' ' RMSE = 0.03591 RMSE = 0.03584

a factor of 4 in both directions, and a 36x36 block
from the center is used as ACS lines for estimating
the coil sensitivities and generating the GRAPPA
kernel. The central ACS block is treated like known
data during reconstruction. GRAPPA, nullspace CS
(SpRING  without the GRAPPA fidelity term),

Fig. 1: The slice is uniformly undersampled by a factor of 4 in both directions and reconstructed using
GRAPPA, nullspace CS, SpRING, and L1 SPIR-T. The £1/€2-norm penalty function is used for both nullspace
CS and SpRING. The inset area is shown for each of the algorithms. The noise amplification in the GRAPPA
result and the over-smoothing in the nullspace CS result are clearly visible. In SpRING and L1 SPIR-iT, Ais
chosen to minimize the RMSE of the magnitude image.

SpRING, and L1 SPIR-T [6] are used on the under-sampled data. The four- 6 0.3
level 'db2' DWT sparsifying transform is used for CS, SpRING, and L1 SPIR-

iT. The reconstructed coil images are combined using the estimated 4 0.2
combination weights. To compute the noise amplification of each algorithm, )
zero-mean white Gaussian noise, with covariance A across coils, is added to

the k-space data, and the result is reconstructed using each algorithm. The g- 2 0.1

factors are computed from these reconstructions using the method in [10],
combined across coils with the estimated coil combination weights.

Results GRAPPA Nullspace CS (1) SpRING (1)
The SpRING and L1 SPIR-T reconstructions in Figure 1 clearly outperform mean = 2.437 mean = 0.1283 A=1002
either GRAPPA or CS alone. However, L1 SPIR-T does not mitigate the max = 6.277 max = 0.5900 mean = 0.07739
coherent aliasing as effectively in this example. The noise amplification g- max = 0.3076

factors for the GRAPPA, CS, and SpRING algorithms are plotted in Figure 2.  Fig. 2: The estimated g-factors are shown for the reconstruction algorithms using
The smoothing induced by the sparsity enforcement term results in g-factor 350 Monte Carlo trials. The spatial average and maximum g-factors are shown for
values less than one. Whereas the largest g-factors for GRAPPA are each reconstruction method. As expected, the GRAPPA noise amplification is
concentrated near the center of the image (away from the coils), the g-factors ~ greatest in the center of the image, and the nonlinear CS and SpRING algorithms' g-
for CS and SpRING are all greatest near the largest image intensities. Since factors depend on the image intensities. (Note the different color scales used in

the CS and SpRING algorithms are nonlinear, the g-factors are image- each panel.)

dependent and vary with the magnitude of the added noise. Both CS and

SpRING do succeed in greatly suppressing the added noise, reducing both the mean and the maximum g-factors by more than a factor of 10 relative to GRAPPA.
Discussion

SpRING succeeds in leveraging the approximate sparsity of the image to de-noise the GRAPPA result and to recover the gray-white contrast lost in the CS-only
result. By adjusting the tuning parameter, the sparsity of the result and the noise present can be controlled. SpRING also can be implemented for the GPU, where
parallelization can greatly accelerate the Fourier and wavelet transforms in the implementation of the algorithm.
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