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Introduction 
Accelerated parallel imaging methods like GRAPPA [1] leverage spatial weighting across coil sensitivities to undo coherent aliasing in undersampled data, at the 
expense of noise amplification.  Compressed sensing (CS) [2-4] relies on incoherent sampling and nonlinear processing to reconstruct an image, at the expense of 
losing non-sparse details.  Algorithms in [5-7] combine parallel imaging with CS to reconstruct high-SNR, approximately sparse images from undersampled data.  
The method presented in [5] is improved using the mixed ℓ1/ℓ2-norm simultaneous sparsity (over P coils) penalty function ||w||S = ∑n ||[wn,1, ..., wn,P]||2 and the LSMR 
method [8] for solving least-squares problems, resulting in Sparse Reconstruction of Images using the Nullspace method and GRAPPA (SpRING).  The g-factors 
factors, derived analytically for GRAPPA in [9], are computed empirically for GRAPPA, CS, and SpRING using the pseudo multiple replica method in [10]. 
Theory 
Given undersampled k-space data d and GRAPPA reconstructed k-space W(d), SpRING consists of finding the missing data x that minimizes ||diag(C1, ..., CP) 
F-1(KTd+(Kc)Tx-W(d))||2 + λ||ΨF-1(KTd + (Kc)Tx)||S.  Here, F-1 is the inverse DFT, [C1, ..., CP] are coil combination weights, K and Kc select the undersampled and 
missing k-space, respectively, and Ψ is the sparsifying transform.  This method operates in the nullspace of the acquired data selection matrix K, guaranteeing the 
acquired data is preserved.  The tuning parameter λ trades fidelity to the GRAPPA reconstruction for sparsity.  The coil combination weights are computed from low-
resolution estimates of the coil sensitivities (S1, ..., SP) using the coil noise covariance matrix Λ: [C1(x,y,z), ..., CP(x,y,z)] = pinv(Λ-1/2[S1(x,y,z), ..., SP(x,y,z)]T)Λ-1/2, 
where pinv() is the left pseudo-inverse. 
Methods 
The coil noise covariance matrix is measured from 
noise-only acquisitions, in which no excitation is 
applied, and the receivers sample thermal noise.  
The reference data is acquired with an un-
accelerated T1-weighted MPRAGE (256×256×176 
sagittal slices, 1.0 mm isotropic resolution) using a 
Siemens 32-channel head coil on a Siemens Trio 
3 T scanner.  The data is split into axial slices, and 
each slice is cropped individually.  The 250×170 
cropped slice shown is uniformly undersampled by 
a factor of 4 in both directions, and a 36×36 block 
from the center is used as ACS lines for estimating 
the coil sensitivities and generating the GRAPPA 
kernel.  The central ACS block is treated like known 
data during reconstruction.  GRAPPA, nullspace CS 
(SpRING without the GRAPPA fidelity term), 
SpRING, and L1 SPIR-iT [6] are used on the under-sampled data.  The four-
level 'db2' DWT sparsifying transform is used for CS, SpRING, and L1 SPIR-
iT.  The reconstructed coil images are combined using the estimated 
combination weights.  To compute the noise amplification of each algorithm, 
zero-mean white Gaussian noise, with covariance Λ across coils, is added to 
the k-space data, and the result is reconstructed using each algorithm.  The g-
factors are computed from these reconstructions using the method in [10], 
combined across coils with the estimated coil combination weights. 
Results 
The SpRING and L1 SPIR-iT reconstructions in Figure 1 clearly outperform 
either GRAPPA or CS alone.  However, L1 SPIR-iT does not mitigate the 
coherent aliasing as effectively in this example.  The noise amplification g-
factors for the GRAPPA, CS, and SpRING algorithms are plotted in Figure 2.  
The smoothing induced by the sparsity enforcement term results in g-factor 
values less than one.  Whereas the largest g-factors for GRAPPA are 
concentrated near the center of the image (away from the coils), the g-factors 
for CS and SpRING are all greatest near the largest image intensities.  Since 
the CS and SpRING algorithms are nonlinear, the g-factors are image-
dependent and vary with the magnitude of the added noise.  Both CS and 
SpRING do succeed in greatly suppressing the added noise, reducing both the mean and the maximum g-factors by more than a factor of 10 relative to GRAPPA. 
Discussion 
SpRING succeeds in leveraging the approximate sparsity of the image to de-noise the GRAPPA result and to recover the gray-white contrast lost in the CS-only 
result.  By adjusting the tuning parameter, the sparsity of the result and the noise present can be controlled.  SpRING also can be implemented for the GPU, where 
parallelization can greatly accelerate the Fourier and wavelet transforms in the implementation of the algorithm. 
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Original Image GRAPPA

RMSE = 0.04302 
Nullspace CS (ℓ1)
RMSE = 0.07457 

SpRING (ℓ1) 
λ = 100.2 

RMSE = 0.03591 

L1 SPIR-iT
λ = 10-2.6 

RMSE = 0.03584 
Fig. 1: The slice is uniformly undersampled by a factor of 4 in both directions and reconstructed using 
GRAPPA, nullspace CS, SpRING, and L1 SPIR-iT.  The ℓ1/ℓ2-norm penalty function is used for both nullspace 
CS and SpRING.  The inset area is shown for each of the algorithms.  The noise amplification in the GRAPPA 
result and the over-smoothing in the nullspace CS result are clearly visible.  In SpRING and L1 SPIR-iT, λ is 
chosen to minimize the RMSE of the magnitude image. 
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Fig. 2: The estimated g-factors are shown for the reconstruction algorithms using 
350 Monte Carlo trials.  The spatial average and maximum g-factors are shown for 
each reconstruction method.  As expected, the GRAPPA noise amplification is 
greatest in the center of the image, and the nonlinear CS and SpRING algorithms' g-
factors depend on the image intensities.  (Note the different color scales used in 
each panel.) 
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