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Introduction Hyperpolarized ®C MRis a powerful tool for studying metabolic processes in vivo. Combined with spectroscopic imaging techniques, this
method enables monitoring of concentration and distribution of injected DNP pre-polarized 3C substrates and downstream metabolic products. However,
spatial coverage and resolution of such metabolic images are fundamentally limited by the rapid metabolism and T, relaxation, necessitating the
development of fast data acquisition schemes. In this work, we investigated accelerating hyperpolarized c spectroscopic imaging with L1-SPIRIT
compressed sensing autocalibration parallel imaging [1]. An autocalibrating reconstruction method was chosen because, in hyperpolarized 3C studies,
acquiring accurate sensitivity maps through pre-scan is not possible. Here, a number of simulations were performed to quantitate the performance of
SPIRIT on spectroscopic imaging data under various acceleration schemes.

Methods 1) For initial investigation, a numerical phantom and coil sensitivity maps were simulated. We modeled data acquired with an 8-channel phased
array receive coil and the MRSI pulse sequence described in [2]. k-space data of three circular phantoms were generated analytically using a Bessel
function of the first kind and then smoothed with a 2D Hamming window to reduce the Gibbs ringing effect in the image domain. Each circle contains
alanine (ala), lactate (lac), or a mixture of pyruvate (pyr) and pyruvate-hydrate (pyr-hyd). The time dimension of the data set was designed assuming a
full echo acquisition, resulting in Lorentzian shaped spectra for each metabolite. k-space data (kx-ky-t) were Fourier transformed into the image domain
(x-y-f), weighted by the coil sensitivity maps and then transformed back to k-space resulting in a matrix size of 64x64x59x8 (kx-ky-t-c). 2) To evaluate the
reconstructed image and noise performance, we tested both SPIRIT and traditional GRAPPA on a data set that was randomly under-sampled by a factor
of 4 while keeping the center 16x16 in the kx-ky dimensions (overall factor of 3.4). Multiple image reconstructions were done over different kernel sizes
(3x3, 5x5, 7x7 and 9x9). In the SPIRIT method, fully sampled data in the center part from all the time points (kf=1---59) were used to calibrate a single
kernel and an iterative conjugate-gradient (CG) type optimization was used to solve the reconstruction problem. 3) Hyperpolarized 3C spectra are very
sparse as there is virtually no background signal and peaks from metabolites are widely separated from one another at high fields (> 3T). Thus, enforcing
sparsity in the reconstructed signal by L1-norm regularization could result in less noise amplification and possibly enable further acceleration in data
acquisition. To demonstrate this capability, we prepared two other sets of randomly under-sampled data. One was under-sampled by a factor of 4.7 and
the second with a factor of 6.4. Spectroscopic images were reconstructed using three algorithms: projection over convex set (POCS) SPIRIT, CG SPIRIT
and L1 regularization SPIRIT. For this study, L1 penalty was enforced on the spectral dimension as simulated spectra itself were already sparse. Finally,
all the results were compared using normalized root mean squared error (nRMSE) with the fully sampled reference image.

Results 1) Figure 1 shows the composition of the numerical phantom, coil sensitivity map and three random under-sampling patterns used in the
simulation. 2) In GRAPPA, larger kernels resulted in slightly better images at the cost of longer reconstruction time. However, GRAPPA tends to amplify
noise in the pixels where other metabolites exist (Figure 2c), which can cause inaccurate metabolic mapping. For the CG SPIRIT reconstruction, the
nRMSE value quickly reached its minimum around 12-14 iterations. Overall, SPIRIT showed less residual error over GRAPPA with better noise
performance. This is because SPIRIT uses all the acquired data more efficiently compared to traditional GRAPPA method. 3) Table 1 shows nRMSE
values for different reconstruction done on various under-sampling schemes. All of the SPIRIT data shown used 12 iterations. The POCS method
needed a few more number of iterations to reach the minimum nRMSE value compared to CG type algorithm. This data show that L1 regularization in
SPIRIT can be used for highly accelerated data acquisitions with reliable quality in reconstructed image.

Discussion Accurate estimation of sensitivity map in hyperpolarized "*C experiment is difficult. Thus autocalibrating reconstruction methods have
advantages over explicit sensitivity-based reconstructions such as SENSE [3]. By exploiting both the coil sensitivity and signal sparsity in the spatial and
spectral dimensions, higher acceleration in data acquisition compared to conventional spectroscopic imaging methods could be achieved. Here, we have
shown that the application of SPIRIT on simulated hyperpolarized *C parallel imaging provided excellent noise performance and reduced artifacts in
highly accelerated imaging schemes.
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a) Factor of random under-sampling

34 4.7 6.4
GRAPPA 0.027 0.043 0.061
CG SPIRIT 0.021 0.027 0.035
<) POCS SPIRIT 0.026 0.033 0.042
L1 regularization SPIRIT 0.013 0.020 0.029

Table 1. nRMSE value for different factor of random under-sampling

Figure 1. a) Numerical phantom
with  signal from four different
metabolites. b) Coil sensitivity map
of 8-channel phased array coils. c)
Random under-sampling pattern
used throughout the experiment.
From left, a factor of 3.4, 4.7 and 6.4
under-sampling.

Figure 2. Lactate image of a) fully
sampled data, b) randomly under-
sampled data, «c) GRAPPA
reconstructed image and d) CG
SPIRIT reconstructed image. Note
the ringing in the under-sampled
image. Both GRAPPA and SPIRIT
used a [7,7] kernel window. SPIRIT
shows better noise performance
over GRAPPA.
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