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INTRODUCTION: Recent advances in compressed sensing (CS) [1] have accelerated MRI by exploiting signal sparsity. a) Reconstruction
However, the existed image recovery scheme [2] may be difficult to converge when the data matrix is large. The object of Ky
this study is to examine the applicability of CS to phase-encoded 3D MRI, which usually acquires a large data matrix with
relatively long acquisition time. We propose an iterative reconstruction procedure that approximates the under-determined
problem with a sequence of over-determined problems. We will demonstrate that this method is accurate, efficient and
stable for recovering 3D MRI from half k-space acquisition.

THEORY: Our reconstruction scheme is based on the current CS-MRI reconstruction [2] that is solving an optimization
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problem (in Lagrange form) min{|M(FT(S))-b|> + 4 S|, + LTV(S)} where S is image, b is measured phase encoding line, the ** Outer loop l
FTis 3D Fourier transform, TV is total variation and M is undersampling operation. However, this optimization problem is b
difficult to solve when image size become large. Hence we replace the above optimization problem by a sequence of [~~~ FT )
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simplified optimization problems. As shown in Fig. 1, the new reconstruction scheme relies on the optimization optimization

problem min{|s — K|, + 4 |S|, + 4,7V (S)} , which is isolated with measurement b. We approximate the constraint |m(Fr(sy—sf 2722200

by using an iteration loop (Fig. la) that iteratively impose the summation of 5 (measured phase encoding line) and
S*(unmeasured phase encoding line) into K. The Lagrange function of inner optimization problem can be separated into Fig. 1: Reconstruction scheme shows the
two parts as {|S— K[ +4 S|, + ATV(S)} = (MFT(S) ~ b} +AS], + ATV (S)} +|FT(S) - MFT(S) - S , the first part is the Lagrange 3D k-space data set: b is the
measurement; S is solution of inner
optimization; K is the sum of » and S".
(a) The reconstruction scheme. (b) The
inner loop optimization.

function of the original optimization problem and the second part is an additional constraint that requires the optimum to be
“localized”. Hence proposed scheme generates a sequence of progressive locally optimal solutions to approximate the
global optimum.

METHODS: the half k-space undersampling was achieved by randomly
selecting the phase encode lines measured. The 3D acquisition order was: . . . -
phase encoding in Kx-direction, phase encoding in Kz-direction and a) Slice orientation b) 100%k-space  50% k-space Error magnified

readout in Ky-direction. As shown in Fig. 3c, the sampling density function 6 1 5 by 20

was quadratic with highest value in the center of Ky-Kz plane. The in-vivo 4
rat brain experiment was performed in a 7T Bruker scanner. T1 contrast 3D

high resolution image was acquired by a Modified Driven Equilibrium FT ~ 2 ‘
sequence [3] with TR/TE = 9/3 ms, Inversion Time = 1.2s, matrix size = 4 mb
160x160%x80, FOV = 32x32mm’, slice thickness = 0.2mm, and NEX = 4.

The 50% random sampling was performed retrospectively to the fully ~€) Sampling pattern

sampled dataset. The raw data was the zero filled to 256x256x80 before
reconstruction.

Slice 2

RESULTS: In Fig.2, the value of Lagrange function of inner optimization
is reduced after each inner loop and appears to approach convergence when
the outer loop terminates in 20 setps. In Fig. 3b, the reconstruction results Kz
(50% k-space dataset) match up well with the original (100% k-space >
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dataset). As shown the histograms of Fig. 3d, the error is less than 1/10 the d) Histograms 3
signal of the subject. The error/image distribution is close to Gaussian with & image &
mean = -0.015 and standard deviation = 0.087 (in Fig. 3d, the background 5
of image is removed by setting threshold at 3 times of noise level). §
DISCUSSION: As illustrated in Fig.2, the reconstruction is stable because g
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?t is over-determined in every iteratign step and each inner optimal solu?io'n 0 Magnitude 100
is always close to the measurement in a least mean square sense. And it is
efficient as no Fourier transform used in the inner loop. Fourier transform
is expensive in terms of computation. The reconstruction is accurate, as
illustrated in Fig. 3. It is important to know that, in the convex optimization,
any locally optimal value is also globally optimal. Hence, the solution of
inner optimization should converge to the global sparse solution. The L-1
norm may slightly “shrink” the recovered signal and enlarge the difference
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L \\\k i3 e Fig. 3: The original 3D image (100% k-space) compare with 50% k-space result. (a)
P S S S S R St The geometry orientations of six oblique views. (b) From left to right: 100% k-space

images (the original), 50% k-space reconstructed image and error map magnified by
20. (¢) The 50% unersampling pattern. (d) From up to down is histogram of:
original image, error and error/image ratio.
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Fig. 2: Showing the proposed method minimize Lagrange
function of inner optimization in each iteration step.
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