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INTRODUCTION: Recent advances in compressed sensing (CS) [1] have accelerated MRI by exploiting signal sparsity. 
However, the existed image recovery scheme [2] may be difficult to converge when the data matrix is large. The object of 
this study is to examine the applicability of CS to phase-encoded 3D MRI, which usually acquires a large data matrix with 
relatively long acquisition time. We propose an iterative reconstruction procedure that approximates the under-determined 
problem with a sequence of over-determined problems. We will demonstrate that this method is accurate, efficient and 
stable for recovering 3D MRI from half k-space acquisition.  
THEORY: Our reconstruction scheme is based on the current CS-MRI reconstruction [2] that is solving an optimization 
problem  (in Lagrange form) 2
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min{ ( ( )) ( )}λ λ− + +M FT S b S TV S where S is image, b is measured phase encoding line, the 

FT is 3D Fourier transform, TV is total variation and M is undersampling operation. However, this optimization problem is 
difficult to solve when image size become large. Hence we replace the above optimization problem by a sequence of 
simplified optimization problems. As shown in Fig. 1, the new reconstruction scheme relies on the optimization 
problem 2
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min{ ( )}λ λ− + +S K S TV S , which is isolated with measurement b. We approximate the constraint 2

2
( ( )) −M FT S b  

by using an iteration loop (Fig. 1a) that iteratively impose the summation of b (measured phase encoding line) and 
S*(unmeasured phase encoding line) into K. The Lagrange function of inner optimization problem can be separated into 
two parts as 2 2 2
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function of the original optimization problem and the second part is an additional constraint that requires the optimum to be 
“localized”. Hence proposed scheme generates a sequence of progressive locally optimal solutions to approximate the 
global optimum. 
METHODS: the half k-space undersampling was achieved by randomly 
selecting the phase encode lines measured. The 3D acquisition order was: 
phase encoding in Kx-direction, phase encoding in Kz-direction and 
readout in Ky-direction. As shown in Fig. 3c, the sampling density function 
was quadratic with highest value in the center of Ky-Kz plane. The in-vivo 
rat brain experiment was performed in a 7T Bruker scanner. T1 contrast 3D 
high resolution image was acquired by a Modified Driven Equilibrium FT 
sequence [3] with TR/TE = 9/3 ms, Inversion Time = 1.2s, matrix size = 
160×160×80, FOV = 32×32mm2, slice thickness = 0.2mm, and NEX = 4. 
The 50% random sampling was performed retrospectively to the fully 
sampled dataset. The raw data was the zero filled to 256×256×80 before 
reconstruction.  
RESULTS: In Fig.2, the value of Lagrange function of inner optimization 
is reduced after each inner loop and appears to approach convergence when 
the outer loop terminates in 20 setps. In Fig. 3b, the reconstruction results 
(50% k-space dataset) match up well with the original (100% k-space 
dataset). As shown the histograms of Fig. 3d, the error is less than 1/10 the 
signal of the subject. The error/image distribution is close to Gaussian with 
mean = -0.015 and standard deviation = 0.087 (in Fig. 3d, the background 
of image is removed by setting threshold at 3 times of noise level).  
DISCUSSION: As illustrated in Fig.2, the reconstruction is stable because 
it is over-determined in every iteration step and each inner optimal solution 
is always close to the measurement in a least mean square sense. And it is 
efficient as no Fourier transform used in the inner loop. Fourier transform 
is expensive in terms of computation. The reconstruction is accurate, as 
illustrated in Fig. 3. It is important to know that, in the convex optimization, 
any locally optimal value is also globally optimal. Hence, the solution of 
inner optimization should converge to the global sparse solution. The L-1 
norm may slightly “shrink” the recovered signal and enlarge the difference 
(error in Fig. 3.b).  
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Fig. 2: Showing the proposed method minimize Lagrange 
function of inner optimization in each iteration step.  

Fig. 3: The original 3D image (100% k-space) compare with 50% k-space result. (a) 
The geometry orientations of six oblique views. (b) From left to right: 100% k-space 
images (the original), 50% k-space reconstructed image and error map magnified by 
20. (c) The 50% unersampling pattern. (d) From up to down is histogram of:  
original image, error and error/image ratio. 

Fig. 1: Reconstruction scheme shows the 
3D k-space data set: b is the 
measurement; S* is solution of inner 
optimization; K is the sum of b and S*. 
(a) The reconstruction scheme. (b) The 
inner loop optimization.   
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