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Overview:  Sparsity promotion is a reconstruction strategy that has proven very effective for 
accelerated MRI applications, permitting images to be accurately formed using much less data 
than traditionally required (e.g., by linear methods) [1].  Of particular success have been tech-
niques that exploit redundancy in the temporal or parametric series dimension [2-8], such as the 
periodicity of cardiac motion via Fourier transform.  However, not every MRI series has an 
obvious sparsifying transformation along the temporal or parametric dimension.  One example is 
a radiologist’s preferred sequence of acquisitions for certain pathology, which can, amongst 
others, consist of a mixture of various T1-weighted, T2-weighted (with and without FLAIR), PD, 
DWI, and pre- and post-contrast images.  Other examples are diffusion tensor (DTI) and spec-
trum (DSI) imaging.  Prior works have demonstrated that temporal or parametric correlations 
between spatially-similar voxels can be exploited in a blind fashion for improved denoising or 
reconstruction performance [9-11].  More recently, a generalization of this notion to so-called 
joint or group sparsity models has been proposed [12,13], where the target signal is encouraged 
to be sparse in one dimension and correlated (i.e., dense) in another.  This idea has so far been 
applied to the coil-by-coil parallel image reconstruction problem, where it is assumed that coil 
images share the same spatial support (either intrinsically [14] or in some transform domain 
[15,16]), as well as cardiac imaging [17], where it is assumed that the image series can be expli-
citly spatially partitioned into groups such that the number of groups not exhibiting a highly-
compact x-f space would be sparse.  Motivated by [11], we demonstrate that joint sparsity can 
not only be utilized for highly-undersampled image reconstructions but also that it offers the 
potential for significantly improved performance over image-by-image reconstructions, which 
are inevitably necessary when a temporal or parametric sparsifying transformation is not availa-
ble.   
Methods: Recall that, for MRI, the ideal sparsity-driven reconstruction involves minimization of 
a least-squares fidelity term regularized by the ℓ0-norm, which is simply a count of the number 
of non-zero signal components.  For the scalar problem, determination of whether the signal is 
non-zero at a point simply involves checking its magnitude.  To generalize this notion to vector-
valued images, some measure of the length of the vector associated with a point must be used.  
Note that a (possibly transform) signal that is spatially sparse but temporally or parametrically 
dense implies that that signal possesses strong spatiotemporal correlations.  This suggests usage 
of the Chebyshev or ℓ∞ -norm as the measure of vector density.  Thus, the vector generalization of the ℓ0-minimization problem is: 
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where u is the target signal, Ψ is the spatial sparsifying transform, α is a regularization parameter, A is the acquisition transform, and the observed signal g=Af+n.  Sx is 
a binary selection operator that isolates the vector associated with the spatial position index by x.  As the ℓ0-minimization problem is intractable due to its non-
convexity, its closest convex approximation, the ℓ1-minimization (the ℓ1-norm is simply the sum of absolute values of a signal) is often used as a surrogate [1].  This 
convex relaxation can also be applied to the vector generalization of the ℓ0-minimization problem; however, the embedded ℓ∞-norm is non-differentiable which limits 
the range of numerical methods than can be used to solve this problem.  Whereas the ℓ1-norm is chosen as the closest convex and non-smooth approximation of the ℓ0-
norm, the ℓ∞-norm can be replaced by its farthest convex and smooth approximation, the ℓ2-norm.            
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The relaxed vector sparsity problem can be readily solved using descent based methods, noting that, for (2),  
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Example: Fig. 1 displays a 256x256 variable flip angle SPGR image sequence (GE Signa 2.0T, v14.0, TR/TE=18.0ms/4.01ms, head array, single-channel, 
FA={2,5,10,15,20,25,30,35,40,45}) reconstructed after retrospective 80% variable density undersampling (a different random instance was used for each image) using 
both a standard ℓ1-minimization approach and the proposed vector generalization.  For the sake of demonstration, we assume that an efficient means of sparsifying such 
signals along the parametric dimension is not known (alternatively, see [7,8]).  Finite spatial differences were used as the sparsifying transformation.  The problem in 
(3) was solved using a generalization of the quasi-Newton method described in [18], with 10 outer and 20 inner iterations performed.  The regularization parameter, α, 
was manually optimized for each reconstruction.  Although the standard ℓ1-minimization reconstruction (Fig. 1c) demonstrates improved sharpness and support recov-
ery relative to the zero-filled reconstruction (Fig. 1b), the result nonetheless contains a high degree of artifact likely due to the high noise level in the original signal.  
Conversely, the proposed vector reconstruction exhibits much stronger fidelity to the fully-sampled image (Fig. 1a) with less artifact and improved background-to-
foreground contrast.   
Discussion:  In this work, we have investigated a generalization of the sparsity-driven reconstruction paradigm for vector-valued images and demonstrated its feasibility 
for the highly-undersampled image reconstruction problem.  While any existing temporal or parametric prior information about a target image should obviously be 
exploited during reconstruction, if no such information is available for an image series then joint sparsity may offer a means for improving reconstruction performance 
beyond what standard sparsity-driven methods can offer.   
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Fig 1. Example reconstruction of ten-angle variable flip an-
gle image series (a) recovered from only 20% of its Fourier 
samples by zero-filling (b), image-by-image ℓ1-minimization 
with finite difference sparsity (c), and the proposed vector 
ℓ1-minimization (d).   
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