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Introduction: The sparsity of MR images in certain transform domains has enabled Compressed Sensing (CS) [1] to obtain accurate image reconstructions from 
undersampled k-space data. CS methods in the past have focused on analytical sparsifying transforms such as wavelets, and finite differences or Total Variation (TV) 
[2] to reconstruct images. However, CS with nonadaptive sparsifying transforms is usually limited in typical MR images to 2.5-3 fold undersampling. Recent work has 
shown that learning adaptive transforms (dictionaries) can lead to superior image reconstructions [3]. The sparsity in this framework is enforced on overlapping image 
patches and the dictionary is directly  adapted to the current image leading to higher undersampling rates. In this work, we explore the use of multiscale dictionaries for 
CS MRI. Such dictionaries enforce sparsity at multiple scales (image patch sizes) combining the results at those scales for superior reconstructions. 
Theory and Algorithm : The Problem formulation (P0) for CSMRI based on multiscale dictionary learning enforces sparsity of the patches of the reconstructed image 
 denotes ݏ ;௨ is the undersampled Fourier transformܨ ,Here .(ݕ) at multiple scales, and also produces a reconstruction that is consistent with the available k-space data (ݔ)
the scale (N  different scales are assumed);  ܴ௜௝௦  is an operator that extracts a square image patch of size ඥ݊௦ ൈ ඥ݊௦   from ݔ; ሺ݅, ݆ሻ indexes the top left corner of the 
patch in ߙ ;ݔ௜௝௦   is the sparse representation of that patch in the scale-dictionary ܦ௦ of size ݊௦ ൈ ௜௝௦ߙ௦ܦ ;௦, with the number of non-zeros not more than ଴ܶ௦ܭ  is the sparse 
approximation of the patch; Γ is the set ൛ߙ௜௝௦ ൟ௜௝,௦; D is the multiscale dictionary ሼܦ௦ሽ௦; and ߭ ൌ ߣ ⁄ߪ  ( σ: measurement noise level (estimate), λ: a positive constant). 

 ሺܲ0ሻ min௫,஽,୻ ∑ ∑ ௦ฮܴ௜௝௦ߛ ݔ െ ௜௝௦ߙ௦ܦ ฮଶଶ ൅ ߭ ԡܨ௨ݔ െ .ݏ  ԡଶଶݕ .ݐ ฮߙ௜௝௦ ฮ଴ ൑  ଴ܶ௦௜௝ ,݅ ׊  ݆, ே௦ୀଵ.ݏ  The first term in the cost of (P0) measures the quality of the sparse 
approximations of the image patches at different scales with respect to the scale dictionaries, with ߛ௦ denoting the weighting at scale s. The second term in the cost 
enforces data fidelity in k-space. (P0) is solved using an alternating minimization scheme. In one step (dictionary learning), ݔ is assumed fixed, and the multiscale 

dictionary D is jointly learnt with the sparse representations of 
the image patches at various scales, Γ. In the other step 
(reconstruction update), D and Γ are fixed, and ݔ is updated to 
satisfy data consistency. The dictionary learning step uses the 
K-SVD algorithm [4] where the ܦ௦ at each s is learnt 
separately from the patches at that scale. The reconstruction 
update step involves a least squares problem that can be solved 
using the corresponding normal equation and employing the 
conjugate gradient method. A simpler solution however, 
updates ݔ in k-space using the dictionary predicted values for 
the non-sampled Fourier frequencies and a weighted average 
between the dictionary predicted value and the measured value 
at sampled k-space locations. The dictionary prediction is 

obtained by taking the Fourier transform of the sparse approximation image that is obtained by averaging (weighted by ߛ௦) the sparse approximations of image patches 
from various scales  at their respective locations in the image. The alternating reconstruction scheme is initialized with a zero-filled Fourier reconstruction for ݔ.  
Experiments: We use the parameters ܰ ൌ 3, ௦ߛ ൌ ,ݏ׊ 1 ݊ଵ ൌ 9, ݊ଶ ൌ 16, ݊ଷ ൌ 25, ௦ܭ ൌ ݊௦, ଴ܶ௦ ൌ 0.15 ൈ ݊௦, ߣ ൌ 140 for the algorithm and compare it with a leading 
CSMRI method [2]. Peak Signal to Noise Ratio (PSNR) in dB is indicated for the reconstructions. Fig. 1 demonstrates the performance of our algorithm on the 
reference image of the brain in (1a) using simulated (by subsampling the DFT) variable density 2D random sampling at 10 fold undersampling of k-space. The 

reconstruction of [2] with wavelets and TV shown 
in (1b) is seen to have many visible aliasing 
artifacts (26. 7 dB). On the other hand, our 
reconstruction shown in (1c) is free of such 
obscuring artifacts (35.9 dB) at this high 
undersampling factor. Fig. 2 uses the ref. image of 
(2a) and performs simulated variable density 
random sampling of k-space at 10 fold 
undersampling. The reconstruction of [2] with TV 
shown in (2b) has large aliasing errors and a poor 
PSNR (26 dB). On the other hand, our formulation 
(P0) produces an artifact-free reconstruction in 
(2c) (36.6 dB). In Fig. 3, T2-weighted k-space 
data of a brain was acquired (by [2]) using a 

cartesian FSE sequence. Randomly undersampled phase encodes of the 2D FSE were obtained in order to test the performance of the proposed reconstruction 
algorithm. When 5.9 fold undersampling was employed, the 
reconstruction of [2] with wavelets and TV shown in (3a) displays  
aliasing artifacts and distortions along the phase encoding direction 
(horizontal). However, the adaptive multiscale reconstruction in (3b) is 
clear and artifact free despite the high undersampling factor.  
Discussion: The multiscale reconstruction scheme outlined in this work 
is shown to give rise to substantially better reconstructions both visually 
and in terms of PSNR, as compared to a leading CSMRI method [2]. 
Reconstructions of [2] at high undersampling factors contain numerous 
artifacts that severly affect image quality. On the other hand, our adaptive 
patch-based approach exploiting scale diversity provides artifact free 
reconstructions even at high undersampling factors.  Future work will 
explore the design of optimal sampling schemes for our framework as 
well as look at other interesting properties of the dictionary that can 
provide even better reconstructions for highly undersampled CSMRI. 
The clinical significance of the visual and quantitative improvements will 
need to be evaluated e.g., by expert observer task-oriented ROC studies.  
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