Evaluation of Principal Component Model-based algorithm for T2 estimation of small objects
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Introduction: Radial Fast Spin Echo (FSE) methods have been proposed for fast T2 mapping based on TE data sets generated from highly
undersampled data. An echo sharing (ES) approach was developed to reconstruct TE images by partitioning k-space into data sets that are weighted
to a specific TE. As shown in
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algorithm (PCA) to reconstruct TE
images from highly undersampled radial FSE data via principal component coefficient maps (2). As shown in Figure 1, in this algorithm we do not
mix TE information; instead we use the various TE data in a model-based approach. As explained in (2), this approach also takes advantage of
temporal and spatial sparsity of the model to improve the T2 estimation.

In this work, we will evaluate this algorithm based on the accuracy of T2 estimation for highly undersampled radial data under different
conditions and compare it with the ES algorithm.
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Methods: For quantitative comparisons a numerical phantom was used to 463 10 —e— 12
conduct simulations. The phantom consisted of a circular object of varying ol I Object diameter (in pixels) T
diameter with T2=100 ms (representing typical malignant lesions) PCA
embedded in a larger circular uniform background with T2y,ckground = 0 ms %
(represents no background), 20 ms, 30 ms, 40 ms, 50 ms, 60 ms, 80 ms, 100
ms, 140 ms, 170 ms and 200 ms. K-space data for the phantom were
generated using the analytic Fourier Transform of a circle using ETL=16,
echo spacing=8 ms, acquisition matrix of 256(frequency)*256 (16 k-space
lines per TE). Independent Gaussian noise was added to the real and S Y
imaginary components of k-space to produce an SNR comparable to in vivo o] r‘?"“"”:‘*—'“/ﬁﬁ"q 7
data and 20 noise realizations were used to derive the statistics. \.,w, -
Physical phantoms containing 5 mm inner diameter glass tubes with I e
agarose concentrations (weight %) of 0.6% and 1.2% were prepared (two of 0 20 30 40 50 B0 B0 100 “fl?z ‘:?;19; back°mi°nd3° 40 50 €0 80 100 140 170 200
each). Two of the vials were embedded in a 2.4% agarose background and g
two were imaged without background. Data were acquired at 1.5T with
ETL~=16, echo spacing=8.29ms, TR=1s. The FOV was set to yield roughly 6-pixel diameter objects for the tubes, representing a 1 cm diameter lesion
for in vivo abdominal imaging. The acquisition matrix of 256x256 yielded a total of 16 radial k-space lines for each of the 16 TE data sets. Gold
standard data were acquired using the radial FSE method with 256 k-space lines per TE.
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Figure 2

Results: Figure 2 shows the % bias of the T2 for small objects (true
T2 =100 ms) of various diameters versus the T2 of the background.
Note that for the ES algorithm the estimation is more accurate when
the T2 of the background is closer to the T2 of the object. The error
increases as the background T2 differs more from the T2 of the
object, and is maximum when there is no background (represented
by T2ysckground = 0 ms). The error also depends on the diameter of
the object. T2 estimates obtained with the PCA approach are less
dependent on the background and object size.

The background independence of PCA T2 estimates is
demonstrated in Figure 3 for a physical phantom. The figure shows
images of the vials without (a, b) and with (c, d) background as well d d 83.6 84.4 1.0 89.2 6.7
as the mean T2 estimates and % error (relative to the gold standard)
for the ES and PCA algorithms. The radial FSE data used for T2
estimation with ES and PCA was 16 times undersampled with respect to the gold standard. Note that the % error of the T2s calculated by the ES
algorithm changes with the background with a 7% increase between vials (a, ¢) and 10.4% between vials (b, d). T2 estimation with the PCA is less
dependent on the background with only a 1.3% change between vials (a, ¢) and 0.9% between vials (b, d).
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Conclusions and Discussion: In this work, we evaluate a PCA-based algorithm, recently developed for T2 estimation from highly undersampled
radial data, and compare it to a previously developed ES approach. Experiments using numerical and physical phantoms show that the PCA-based
algorithm yields T2 estimates that are more accurate for small objects and less dependent on the surrounding background.
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