

Robust multicomponent T2 imaging in the brain at 3 T using least squares fitting in the presence of RF inhomogeneities

S. Zhao^{1,2}, D. L. Buckley³, and G. J. Parker^{1,2}

¹Imaging Science, The University of Manchester, Manchester, United Kingdom, ²Biomedical Imaging Institute, The University of Manchester, Manchester, United Kingdom, ³Division of Medical Physics, University of Leeds, Leeds, United Kingdom

Introduction: Multicomponent T₂ imaging of the brain can distinguish the presence of water within the myelin layers, the intra/extracellular space, and CSF, hence allowing the production of a myelin water fraction map, which is of interest for many applications [1][2][3][4]. A 3D CPMG spin-echo sequence [3] is capable of acquiring multiple echo images from which it is possible to generate T₂ spectrum images, such as from myelin water, intra/extracellular water, and CSF, by using the non-negative least squares (NNLS) method [1][2]. However, at 3 T, RF inhomogeneity causes the CPMG refocusing pulse to deviate from the ideal 180°, leading not only to reduced spin-echo signals, but also to signal from stimulated echoes introduced from the second echo onwards [5], which cause errors in estimates in short T₂ components obtained using NNLS. An acquisition method using alternating polarity and decaying amplitude spoiling gradients has been proposed to reduce the stimulated echo signal [6], but this is not generally available on clinical scanners. A least squares fitting method that takes into account stimulated echoes has been proposed to acquire *mono-exponential* T₂ maps in brain at 4.7 T [5]. Here we present a method of using least squares fitting to obtain *multiple* exponential T₂ spectrum images that accounts for stimulated echoes from the brain at 3 T.

Methods and Results: Experiments were conducted on a Philips 3 T Achieva. We use a 3D CPMG turbo-spin-echo sequence [3] with 32 echoes and echo spacing 10 ms, nominal refocusing angle 165°, and a TR of 1200 ms, FOV of 240x202 mm², matrix size 256x192, 8 4 mm slices. The total acquisition time is 20 minutes. Fig. 1 shows signals from two regions in brain, where the stimulated echo signal effect is evident as a relatively low signal in the first echo. This leads to a poor estimate of the short T₂ (myelin) component image using NNLS, as shown in Fig.2.

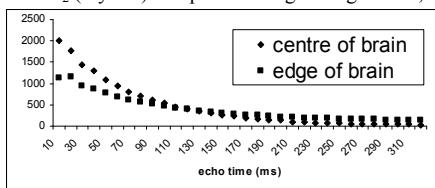


Fig.1. Echo signals from 2 regions in the brain, stimulated echo effect is evident due to the non-180° refocusing pulses.

Fig.2. The shortest component ($T_2 = 10$ ms) of T_2 spectrum image, generated using NNLS, which fails to obtain any meaningful values due to the stimulated echo problem.

It has been proposed [5], that the multiple echo signals of different T₂s and rephasing angles can be calculated by an extended phase graph [7]. As we use a 3D data acquisition, the slice profile problem discussed in [5] is largely avoided. Therefore using the method described in [7] without considering slice profile or T₁ effects [5], we simulated normalised echo signals according to the experimental conditions for different T₂s and rephasing angles as $S_i(T_2(x), \Phi(x))$, where Φ is the true rephasing angle at position x in the brain and i is the echo number index. The total signal is modelled as the sum of different T₂ components as $M_i(x) = \sum A_j(x) * S_i(T_2(x), \Phi(x))$ (Eq. 1), where A_j is the proportion factor for T_{2j} , and the summation over index j , the T₂ components of the brain. We have observed from [1][2][3] and our data that there are 4 detectable T₂ components in the healthy brain with values at approximately: $T_2 = 10$ ms for myelin water, $T_2 = 60$ ms for intracellular water, $T_2 = 90$ ms for extracellular water and $T_2 = 1000$ ms for CSF respectively. We therefore set j from 1 to 4, with T₂ values are fixed at these values, respectively. Also we assign a parameter λ to represent the B₁ efficiency, so that $\Phi(x) = \lambda(x) * \Phi_0$, where Φ_0 is the nominal angle of the rephasing pulse, 165° in our case. Then there are 5 unknown parameters in (1): A_1, A_2, A_3, A_4 and λ , which can be determined by least squares fitting for each voxel in the brain.

Fig.3 shows the fitted data along with the experimental data for the two regions of brain as shown in Fig.1. Fig.4 shows the T₂ spectrum images of the 4 fitted components. Fig.5 is the fitting errors and Fig.6 shows fitted λ map along with a B₁ map from the brain.

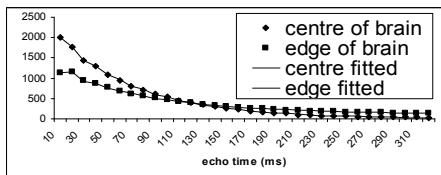


Fig.3. Excellent fitting results achieved of the signals in Fig.1 using our proposed method.

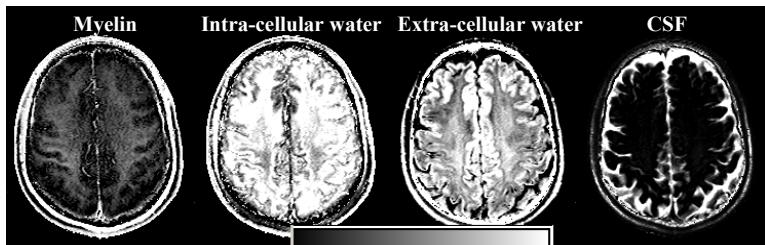


Fig.4. T2 component ratio images of brain generated using our method. From left to right: myelin water with $T_2 = 10$ ms, intracellular water with $T_2 = 60$ ms, extracellular water with $T_2 = 90$ ms, and CSF with $T_2 = 1000$ ms, all displayed with a scale of 0 to 0.5.

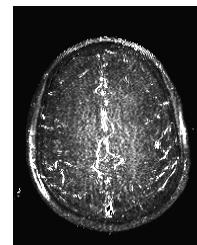


Fig.5. Map of fitting errors.

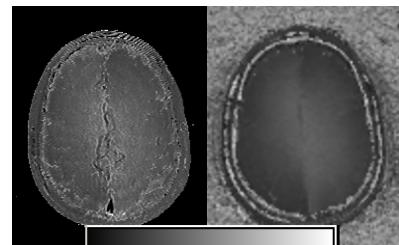


Fig.6. Left: fitted λ map, Right: a B_1 map of the same slice, all displayed with a scale of 0 to 1.25

Discussion: We have demonstrated that our proposed method is able to distinguish four T₂ components in the normal brain that demonstrate the expected spatial distributions of myelin water, intracellular water, extracellular water and CSF (Fig.4). It does so in the presence of variable RF amplitudes that cause stimulated echo contamination of the CPMG signal and in doing so also provides an estimate of the B₁ efficiency across the brain (Fig.5). A limitation of our approach is that we assume four pools of fixed T₂ in the calculation. However, as four pools are generally described for the brain, this seems a reasonable assumption, and our method can be thought of as being equivalent to a reduction in the number of T₂ components being investigated in a NNLS study, as proposed in [8]. Future work will explore the sensitivity of our method to expected changes in the amplitudes of each component in the presence of pathology.

Acknowledgement: We would like to thank Drs. Elizabeth Moore & Burkhard Mädler from Philips Medical Systems for their kind help on this work and Barry Whitnall, Neal Sherratt, Lindsay Linskey & Amy Watkins for their kind help in data acquisition.

Reference: [1] Mackay *et al.* (1994) MRM, 31:673. [2] Whittall *et al.* (1997) MRM, 37: 34-43. [3] Mädler *et al.* (2008) MRI, 26: 874-888. [4] Deoni *et al.* (2008) MRM, 60:1372-1387. [5] Lebel *et al.* (2010) MRM, 64: 1005-1014. [6] Poon *et al.* (1992) JMRI, 2:541-553. [7] Hennig, (1988), JMR, 78: 397-407. [8] Vavasour *et al.* (2000) MRM, 44: 860-866.