Automatic brain tumor segmentation and tumor tissue classification based on multiple MR protocols

A. Franz', H. TschampaZ, A. Miiller?, S. Remmele', J. Keuppl, J. Gieseke®, H. H. Schild’, and P. Miirtz’
'Philips Research, Hamburg, Germany, “Department of Radiology, University Hospital Bonn, Bonn, Germany, *Philips Healthcare, Hamburg, Germany

Introduction
Segmentation of brain tumors in Magnetic Resonance (MR) images and classification of the tumor tissue into vital, necrotic, and perifocal edematous is required in a
variety of clinical applications, as tumor diagnosis, grading and follow-up studies via volumetry [1,2], radiation therapy planning [3], surgery planning [4], or automatic
region-of-interest segmentation for quantitative analysis, as vascularity-related parameters [5]. Manual delineation of the tumor tissue boundaries is a tedious and error-
prone task, and the results are not reproducible. Hence, an automatic procedure for segmenting and classifying brain tumor tissue is needed. A variety of segmentation
approaches for brain tumors in MR images can be found in the literature, which are mainly based on statistical [6-8] and variational [9-12] methods. Tumor tissue
classification mostly requires information of several MR protocols and contrasts, as T1, T1contrast
enhanced (T1CE), T2, FLAIR, MPRAGE, VASO [4,13-16]. The aim of this work was to realize a
segmentation tool based on a 3D region growing algorithm for depiction of vital tumor, necrotic area
and perifocal edema in TICE and FLAIR images. Both image types are included in brain tumor
protocols that are used in regular clinical routine.

Methods

A 3D region growing algorithm [17] was alternately applied on the TICE and FLAIR images. The
starting point was manually set. The image intensity at the starting point was used as initial upper
threshold of the search range in both contrasts. As soon as an image voxel with a higher intensity
was found, the upper threshold was updated, and the region growing started again at the location of
this newly found maximum intensity. This resulted in a robust segmentation which was independent
of the location of the starting point within the tumor. The lower threshold of the search range was
related to the upper one, whereby the ratio was initialized with a small value (0.4 for TICE and 0.35
for FLAIR images) and automatically enlarged if leakage occurred. Hence, the upper and lower
thresholds of the search range were adapted automatically to the requirements of the actual image
without user intervention. Nevertheless, if the segmentation result was not satisfying, the user was
allowed to adapt the thresholds. First, the region growing was applied in the TICE image on a
coarse image resolution (3x3x3mm voxel size). The segmented region was then used as starting
region for a coarse segmentation in the FLAIR image. Both segmentations were refined on the
original image resolution. The segmented hyperintense region in the TICE image was classified as Figure 1: 3D data set of a glioblastoma: TICE (left), FLAIR
vital tumor area. A ray search criterion [18] in 2D was used to identify surrounded points which (middle), and segmentation result (right, color coded: red = vital
were then classified as necrosis. The remaining segmented hyperintense voxels in the FLAIR image tumor, blue = necrosis, green = perifocal edema). The rows show
correspond to the perifocal edema. two representative slices out of the 3D data sets.

We applied our segmentation algorithm to 20 clinical routine cases of brain tumors, namely 15
glioblastomas and 5 meningiomas. The images were acquired on a Philips 3T Intera (Best, The
Netherlands). The segmentation results were semi-quantitatively validated on two representative
slices out of each 3D dataset by two experienced radiologists in consensus. The deviation between
segmentation result and visually estimated tumor characteristics was rated on a 5-point scale ranging
from “severely under-segmented” to “severely over-segmented”. As satisfactory we considered
those cases with matching results (“ok”) and “slightly under-segmented” or “slightly over-
segmented” results.

Results

In 17 out of the 20 clinical test cases we achieved satisfactory results, the validation details can be
seen in Table 1. In 9 cases, the tumor rim was very narrow such that the segmented vital tumor area
was not closed. Nevertheless, the ray search criterion lead in 89% of these cases to a correct
classification of the enclosed necrotic tumor part (see, for instance, Fig. 1). All images revealed
strong hyperintense signal around the eyes. If these areas are close to the tumor, region growing
algorithms tend to leak out. Our coarse-to-fine approach and the automatic threshold adaptation
mostly prevented leakage (see, for instance, Fig. 2). The computation time needed for the whole
segmentation and classification process was around ten seconds on a standard personal computer.

Discussion and Conclusions
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results in 85% of the clinical test cases. The only required user interaction is a as in Fig. 1.

mouse click for providing the starting point. The automatic segmentation result severly slightly ok slightly severly
can be altered by adapting the region growing thresholds. under-segm. | under-segm. over-segm. | over-segm.
The current version of our segmentation algorithm is only suitable for vital tumor 5.0% 32.5% 57.5% 5.0% 0.0%
monofocal tumors. In case of multifocal tumors, the algorithm segments only necrosis 10.0% 0.0% 70.0% 20.0% 0.0%
the part of the tumor which is connected to the user-given starting point. The  [cdema 7.5% 12.5% 50.0% 27.5% 2.5%

extension to multifocal tumors will be addressed in our future research. Table 1: Validation results for 20 clinical test cases (2 slices out of each data set).
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