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Background and Purpose:  
Quantification of brain volume is important for understanding brain structure and diagnosis of subtle anatomical changes in variant brain diseases. Magnetic 

resonance imaging (MRI) provides a stack of high quality images with different tissue contrast, based on the local tissue parameters of T1, T2 relaxation times and 
proton density, makes more reliably characterization of each voxel than single-contrast techniques [1]. Brain tissue segmentation from MR scans is often complicated by 
the existence of partial volume voxels that contain a mixture of two or more tissue types [2]. Currently MR image analysis is generally performed by spatial domain-
based inter-voxel techniques which take advantage of inter-voxel spatial correlation among data samples but do not provide quantification results of tissue substances. 
Linear spectral mixing analysis (LSMA) has recently applied to MR image classification and shown potential in MR image classification [3]. Unlike the traditional 
classification which is mainly focused on inter-voxel correlation among data samples, the LSMA explores intra-voxel correlation to characterize spectral properties for 
classification. As a result, a major strength of the LSMA is to perform mixed voxel classification by estimating abundance fraction of each tissue substance present in a 
voxel to provide the likelihood of each tissue substance to be classified in one particular class. In order for the LSMA to be able to do so, this paper aims to designing a 
technique, called fully constrained least squares (FCLS)[4], which allows users to estimate the abundance fraction of each of tissue substances so as to compute their 
partial volumes in a complete MR image slice cube. To demonstrate the performance of our proposed approach, experiments are conducted for performance analysis 
and evaluation. 
Materials and Methods:  

The synthetic brain images available from McGill University, Montreal, Canada (available at www.bic.mni.mcgill.ca/brainweb/) were used allowing reproduce 
our experiments. Multispectral data of axial T1, T2, and proton density MR brain images [with 5-mm section thickness, and the noise is simulated with its intensity 
varying from 0-20%.] were analyzed to test the performance of our proposed methods.  
Linear spectral mixture analysis (LSMA) 

Linear spectral mixture analysis (LSMA) is a widely used technique to unmix multi-component composition in remote sensing imagery. More specifically, let  
pmmm L,, 21 be p image endmembers assumed to be the data and ][ 21 pmmmM L=  be the signature matrix formed by these p image endmembers to be used to 

model an L-dimensional image voxel vector r as a linear mixture given by nMαr += (equation 1), where n is a noise vector which can be used to describe a model or 
measurement error and ( )Tpααα ,,, 21 K=α is an unknown p-dimensional abundance vector associated with pmmm L,, 21  with αj representing the abundance fraction of 

the jth endmmeber mj present in the voxel vector r. Due to physical constraints two abundance constraints are generally imposed on (equation 1), which are Abundance 
Sum-to-One Constraint (ASC) specified by 11 =∑ =

p
j jα  and Abundance Non-negativity Constraint (ANC) specified by 0≥jα  for all pj ≤≤1 . In other words, linear 

spectral unmixing takes advantage of nMαr +=  to unmix p image endmembers, pmmm L,, 21  by finding their respective abundance fractions pααα ,,, 21 L  

with/out the abundance constraints, ASC and ANC. In this paper the LSMA is implemented by a fully abundance constrained method, called Fully Constrained Least 
Squares (FCLS) developed by Heinz and Chang in [4]. 
Three dimensional (3D) Receiver Operating Characteristic (3D ROC) 

One of most widely used evaluation tools in medical diagnosis is so-called receiver operating characteristic (ROC) which evaluates a given detector based on a 
curve, referred to as ROC curve plotted as a function of detection probability versus false alarm probability [5]. The detection probability (PD) and the probability of 
false alarm (PF) can be expressed as follows.  

( )∫ =Λ+= >Λ τ τγ)( 1 })(|{)(rD rrrrP Pdp  and ( )})(|{)1()()( 0 τγτ =Λ−+∫= >Λ rrrrP rF Pdp  with the τ determined by the prescribed PF .  

In order to evaluate the detection performance, a Receiver Operating Characteristic (ROC) analysis is commonly used as an evaluation tool to assess the 
effectiveness of a detector based on an ROC curve plotted as a function of PD versus PF for analysis as shown in Fig. 1. As an alternative to the use of ROC curves, the 
area under curve (AUC), Az which has been widely used in medical diagnosis [5] is also calculated by the area under the ROC curve. 
Results:  

Fig. 2 present one set classification results of FCLS via 0% noise corrupted synthetic brain MR image. The experimental results demonstrate the utility of the 
intra-voxel multispectral techniques to compute partial volumes of each of tissue substances via their estimated abundance fractions. The 3D ROC analysis is also 
developed for performance evaluation where a third dimension is introduced to threshold abundance fractions so as to detection rates. To further quantify the 3D ROC 
plots, we calculated their related area under curves, denoted by (Az) correspond to overall detection, true positive detection and false positive detection performance 
measures. These values were further tabulated in the following tables where Table 1 shows the Az for FCLS with different noise levels. 
Conclusion:  

The intra-voxel multispectral techniques provide a means of computing partial volumes of tissue substances, a task which generally cannot be accomplished by 
many existing inter-voxel based techniques. It offers better and more accurate partial volume estimates than inter-voxel spatial-based techniques by interpolation. 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Az of 3D ROC analysis for mean classification rates of CSF, GM and 
WM for 3-tissue (GM, WM, CSF) classification of FCLS. 

Noise level FCLS 
(Az(PD,PF), Az(PD, τ), Az(PF, τ)) 

0% noise (0.9259,  0.6706,  0.0934) 
5% noise (0.9272,  0.6697,  0.0925) 

10% noise (0.9287,  0.6685,  0.0918) 
20% noise (0.9270,  0.6602,  0.0911) 
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Fig. 2. The classifying tissues of interest 

(CSF, GM, and WM) were used the FCLS 
method. 
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