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Introduction: 
A number of highly accelerated data acquisition methods for 3D volumetric MRI using both 
Compressed Sensing and parallel imaging have been developed.  Among them L1-SPIRiT[1], 
and an efficient version of it called ESPIRiT[2] have been proposed in the recent past. 
ESPIRiT addresses the computational challenges with the use of an image-domain Parallel 
imaging (PI) operator based on sensitivity maps obtained from a SPIRiT [4] convolution 
kernel, in place of performing computationally expensive convolution with the  kernel in k-
space in L1-SPIRiT. But the computation of the SPIRiT kernel weights itself is still 
computationally expensive, especially for  high channel count reconstructions. The weights are 
computed by obtaining a least squares fit for predicting target points in the calibration region 
using a set of source points in their neighborhood. The computational complexity for 
generating the kernel weights is dependent on  the number of source points and the number of 
target points. In the past, some approaches for optimal kernel support were explored in the 
context of GRAPPA [5]. This work is aimed at developing an optimally shaped neighborhood 
that reduces the number of source points without sacrificing image quality, but has much 
improved computational performance. 
Theory: 
The autocalibration procedure for ESPIRiT generates reconstruction weights w by fitting a 
source matrix A to a target matrix B using generalized matrix inversion. Number of rows m of 
A,  are the number of points in the calibration region.   Conventional ESPIRiT calibration uses 
all source points in a cube-shaped k-space kernel. For a N-channel dataset with a kernel size of 
k1xk2xk3, the number of columns n are  k1xk2xk3xN.  The weights for each coil are obtained 
by solving Moore-Penrose pseudo inverse [2] i.e., solve   for Cw=D, where C=ATxA , D= 
ATxB.  Coil-weights diminish rapidly, as k-space distance increases as shown in Figure 1(a).  
Based on this observation, the significance of source points formed by k1 x k2 x k3 
neighborhood around each target pixel was studied by experimenting with different 
neighborhoods defined by the Lp-neighborhood of the target point. If X1=(x1,y1,z1),   
X2=(x2,y2,z2) εR3  the Lp distance dp(X1,X2) between X1 and X2 is  defined as ( (x1-x2) p+(y1-
y2)p+(z1-z2) p)1/p. Lp-neighborhood of a point XεR3 for a kernel of radius r is defined as {YεR3, 
∋  dp(X,Y)<rp}. Different neighborhoods for p= 1, 2,∞ would take different shapes as shown in 
figure 1(a). For a typical kernel of radius r=3, an L∞ kernel has 343 neighbors.  The number of 
columns n of matrix A, goes down by a factor of 5.4 for an L1-neighborhood and by 2.78 for 
an L2-neighborhood.  Since the solver is of the order of n3,  this gives an overall speed-up of  
150x for an L1 kernel and 21x for L2 kernel over a typical box shaped L∞ kernel.  The 
correlation computation time for computing the correlation matrix C scales down linearly. 
Methods:  
Based on the above theory, the calibration step mainly consists of the following operations: 1) 
Forming the A matrix, based on the neighborhood shape. 2) Finding the correlation matrices 
C= ATxA, D=ATxB 3) Solving for the kernel weights for each coil.  Creating the  matrix A and 
finding the correlation matrix takes up significant memory and involves redundant 
computation. We exploit the redundancy and directly compute the correlation matrix as 
proposed in [3].  We experimented the method described above for Lp neighborhoods, with 
p=0.1 to 1 in steps of 0.1, for p=2 and p=∞ on 4 patient datasets (T2-weighted brain MRI using 
8-channels and 32 channels, Proton-density-weighted Knee MRI,  noncontrast-enhanced renal 
MRA). 
Results: 
While we observed some difference in the image quality for p<1, we found that for p=1, p=2, 
p=∞ there was no visible difference in image quality. The ESPIRiT reconstruction outputs by 
using L1,L2,L∞ norms for calibration weights computation are shown in figure 1(d). This is 
confirmed by the fit we observe between source and target points for these neighborhoods and 
the coil-maps generated as shown in figure 1(c). We implemeted this approach on a dual Intel 
Xeon 55xx.  With our multi-threaded implementation using 8-threads, for a 32-channel dataset, 
and a calibration region of size 27x27x128,  the compute time for the solver is 720 seconds for 
L∞ kernel,  5 seconds for L1 kernel, and 35 seconds for L2 kernel . 
Discussion: 
Using an optimal neighborhood for calculating kernel weights for calibration in ESPIRiT, we 
can significantly improve the computational efficiency, This study demonstrates that we can 
achieve this, ensuring that we are not compromising on the fit between the source and target 
points from the calibration region and more importantly the perceptual image quality. 
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Figure 1: T2-weighted 32 channel Brain MRI (a) Plot of 
weights for a typical 7x7 neigborhood (b)Neighborhood 
shapes (c) Coil Maps (d) Final Output (e) difference Images 
with respect to fully sampled for L1 L2 and L∞ norms
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Figure 2: PDW- 8-channel Knee MRI: Final Output 
for L1,L2 and L∞   norms  
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