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Introduction:

A number of highly accelerated data acquisition methods for 3D volumetric MRI using both
Compressed Sensing and parallel imaging have been developed. Among them L1-SPIRIT[1],
and an efficient version of it called ESPIRiT[2] have been proposed in the recent past.

ESPIRIT addresses the computational challenges with the use of an image-domain Parallel 0% (a)
imaging (PI) operator based on sensitivity maps obtained from a SPIRIiT [4] convolution o2

kernel, in place of performing computationally expensive convolution with the kernel in k- © T ol

space in L1-SPIRiT. But the computation of the SPIRIT kernel weights itself is still ¢
computationally expensive, especially for high channel count reconstructions. The weights are L1-neigbors L2-neigbors Leo-neigbors

computed by obtaining a least squares fit for predicting target points in the calibration region
using a set of source points in their neighborhood. The computational complexity for

generating the kernel weights is dependent on the number of source points and the number of ’ .

target points. In the past, some approaches for optimal kernel support were explored in the

context of GRAPPA [5]. This work is aimed at developing an optimally shaped neighborhood
that reduces the number of source points without sacrificing image quality, but has much
improved computational performance.

Theory:

The autocalibration procedure for ESPIRIT generates reconstruction weights w by fitting a
source matrix A4 to a target matrix B using generalized matrix inversion. Number of rows m of
A, are the number of points in the calibration region. Conventional ESPIRIT calibration uses
all source points in a cube-shaped k-space kernel. For a N-channel dataset with a kernel size of
k1xk2xk3, the number of columns n are kIxk2xk3xN. The weights for each coil are obtained
by solving Moore-Penrose pseudo inverse [2] i.e., solve for Cw=D, where C=A"xA4 , D=
A"xB. Coil-weights diminish rapidly, as k-space distance increases as shown in Figure 1(a).
Based on this observation, the significance of source points formed by k/ x k2 x k3
neighborhood around each target pixel was studied by experimenting with different
neighborhoods defined by the Lp-neighborhood of the target point. If X;=(x1,y1,Z1),
X,=(X2,y2,22) €R® the L, distance d,(X1,X;) between X, and X; is defined as ( (xi-Xz) P+(yi-
y2)PH(z41-2,) P)P Lp-neighborhood of a point XeR? for a kernel of radius r is defined as {YeR®,
3 d,(X,Y)<r}. Different neighborhoods for p= 1, 2,e would take different shapes as shown in
figure 1(a). For a typical kernel of radius r=3, an Leo kernel has 343 neighbors. The number of
columns n of matrix A, goes down by a factor of 5.4 for an L1-neighborhood and by 2.78 for
an L2-neighborhood. Since the solver is of the order of n®, this gives an overall speed-up of
150x for an L1 kernel and 21x for L2 kernel over a typical box shaped Leo kernel. The
correlation computation time for computing the correlation matrix C scales down linearly.
Methods:

Based on the above theory, the calibration step mainly consists of the following operations: 1)
Forming the A matrix, based on the neighborhood shape. 2) Finding the correlation matrices
C= A"xA, D=A"xB 3) Solving for the kernel weights for each coil. Creating the matrix 4 and
finding the correlation matrix takes up significant memory and involves redundant
computation. We exploit the redundancy and directly compute the correlation matrix as
proposed in [3]. We experimented the method described above for Lp neighborhoods, with = P == Ziz = : : :
p=0.1to 1 in steps of 0.1, for p=2 and p=ce on 4 patient datasets (T2-weighted brain MRI using Figure 1: T2-weighted 32 channel Brain MRI (a) Plot of
8-channels and 32 channels, Proton-density-weighted Knee MRI, noncontrast-enhanced renal weights for a typical 7x7 neigborhood (b)Neighborhood
MRA). shapes (c) Coil Maps (d) Final Output (e) difference Images
Results: with resnect to fullv samnled for 1 112 and | .o norms
While we observed some difference in the image quality for p<l, we found that for p=1, p=2,
p=ce there was no visible difference in image quality. The ESPIRIT reconstruction outputs by
using L1,L.2,Lee norms for calibration weights computation are shown in figure 1(d). This is
confirmed by the fit we observe between source and target points for these neighborhoods and
the coil-maps generated as shown in figure 1(c). We implemeted this approach on a dual Intel
Xeon 55xx. With our multi-threaded implementation using 8-threads, for a 32-channel dataset,
and a calibration region of size 27x27x128, the compute time for the solver is 720 seconds for
Leo kernel, 5 seconds for L1 kernel, and 35 seconds for L2 kernel .

Discussion:

Using an optimal neighborhood for calculating kernel weights for calibration in ESPIRIT, we
can significantly improve the computational efficiency, This study demonstrates that we can
achieve this, ensuring that we are not compromising on the fit between the source and target
points from the calibration region and more importantly the perceptual image quality.
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