<u>Iterative Compressed Sensing Reconstruction for 3D Non-Cartesian Trajectories without Gridding & Regridding at Every</u> <u>Iteration</u>

M. AKCAKAYA *1, S. NAM *1,2, T. BASHA1, V. TAROKH2, W. J. MANNING1, AND R. NEZAFAT1

¹DEPT. OF MEDICINE (CARDIOVASCULAR DIVISION), BETH ISRAEL DEACONESS MEDICAL CENTER, HARVARD MEDICAL SCHOOL, BOSTON, MA, UNITED STATES, ²SCHOOL OF ENGINEERING AND APPLIED SCIENCES, HARVARD UNIVERSITY, CAMBRIDGE, MA, UNITED STATES

INTRODUCTION: Undersampling with non-Cartesian k-space trajectories causes incoherent artifacts that may be removed using compressed sensing (CS) [1]. CS undersampling for radial, stack-of-radials and stack-of-spirals has already been demonstrated [1-4]. For these acquisitions, the CS reconstruction is typically performed using conjugate-gradient (CG) type algorithms, where a gridding and regridding is performed at every iteration [1]. In this work, we investigate an alternative method for solving the CS objective function that does not require gridding and regridding at every iteration, reducing the computational complexity.

THEORY: The acquired non-Cartesian data is given by $\mathbf{s} = \mathbf{GFm}$, where \mathbf{G} is the regridding operator, \mathbf{F} is the Fourier transform and \mathbf{m} is the image. Without loss of generality, we ignore de-apodization [5], since it can be corrected for the final image estimate. CS reconstruction solves an objective function of the form, arg min_m ½|| $\mathbf{s} - \mathbf{GFm}$ ||₂²+ λ || $\mathbf{\Psi}^*\mathbf{m}$ ||₁, where $\mathbf{\Psi}$ is a unitary transform (e.g. image or wavelet domain). We first perform a quadratic relaxation [6] on the l_I term by introducing an auxiliary variable \mathbf{z} and change the objective function to: arg min_{m,z} ½|| $\mathbf{s} - \mathbf{GFm}$ ||₂²+ λ (|| \mathbf{z} ||₁+ β /2|| $\mathbf{z} - \mathbf{\Psi}^*\mathbf{m}$ ||₂²). For large values of β , this enforces \mathbf{z} to be close to $\mathbf{\Psi}^*\mathbf{m}$, reducing to the first problem. This is then solved using alternate minimization [7]: First \mathbf{m} is kept fixed and \mathbf{z} is updated by l_I soft-thresholding coordinate-wise in $\mathbf{\Psi}$ -domain. Then \mathbf{z} is kept fixed and \mathbf{m} is updated by solving: arg min_m || $\mathbf{s} - \mathbf{GFm}$ ||₂²+ $\lambda\beta$ || $\mathbf{z} - \mathbf{\Psi}^*\mathbf{m}$ ||₂², a least squares problem with solution, $\mathbf{m}_{est} = (\mathbf{F}^*\mathbf{G}^*\mathbf{GF} + \lambda\beta\mathbf{\Psi}\mathbf{\Psi}^*)^{-1}(\mathbf{F}^*\mathbf{G}^*\mathbf{s} + \lambda\beta\mathbf{\Psi}\mathbf{z})$. Noting that $\mathbf{\Psi}\mathbf{\Psi}^* = \mathbf{I}$, IFFT of $\mathbf{m}_{est} = (\mathbf{G}^*\mathbf{G} + \lambda\beta\mathbf{I})^{-1}(\mathbf{G}^*\mathbf{s} + \lambda\beta\mathbf{F}(\mathbf{\Psi}\mathbf{z}))$, which is computationally easier to solve. To avoid the inversion of the first term, we approximate $\mathbf{G}^*\mathbf{G}$ by a diagonal matrix, i.e. we find arg min_{K is diagonal} || $\mathbf{K} - \mathbf{G}^*\mathbf{G}$ ||_F, where ||·||_F is the Frobenius matrix norm. Note ($\mathbf{K} + \lambda\beta\mathbf{I}$) is a diagonal matrix that can be inverted easily. Since gridding (\mathbf{G}^*) and regridding (\mathbf{G}) involve approximations, replacement of $\mathbf{G}^*\mathbf{G}$ by \mathbf{K} is a reasonable approximation that allows us to avoid gridding and regridding at every iteration. We note similar approximations have been used in parallel imaging [8]. Furthermore, \mathbf{K} also has an intuitive explanation: It is the result of re-gridding an all-

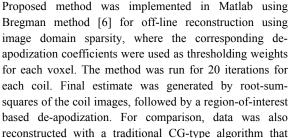
space. In essence, **K** specifies the weights associated with a particular k-space location in the gridded data ($\mathbf{G}^*\mathbf{s}$) with points closer to the spokes or to the center getting a bigger weight, and it has to be calculated only once before reconstruction. Hence, the data-consistency step, $(\mathbf{K}+\lambda\beta\mathbf{I})^{-1}(\mathbf{G}^*\mathbf{s}+\lambda\beta\mathbf{F}(\Psi\mathbf{z}))$, provides a weighted average value of the acquired gridded k-space and the k-space corresponding to the thresholded estimate, normalized by the sum of weights for each (**Fig. 1**). In contrast, for the Cartesian case, the data consistency is typically done by replacing the acquired locations in the k-space of the thresholded estimate with the acquired lines [9], which is not possible in the non-Cartesian setting. Finally, we note other regularizers, such as total variation can be incorporated into the method easily, e.g. as in [7]. Thus iteration t of the proposed reconstruction algorithm is as follows: a) threshold current image estimate, $\mathbf{m}^{(t)}$ in $\mathbf{\Psi}$ -domain, b) FFT the thresholded estimate (i.e. $\mathbf{F}(\mathbf{\Psi}\mathbf{z})$) and perform data consistency, $(\mathbf{K}+\lambda\beta\mathbf{I})^{-1}(\mathbf{G}^*\mathbf{s}+\lambda\beta\mathbf{F}(\mathbf{\Psi}\mathbf{z}))$, c) IFFT (b) to generate $\mathbf{m}^{(t+1)}$.

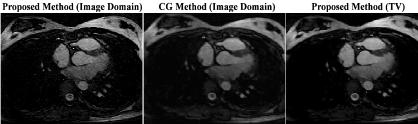
<u>MATERIALS AND METHODS</u>: Whole heart ECG triggered, segmented cardiac MRI was acquired on a 1.5T Philips Achieva magnet with 5-channel cardiac coil. A 3D koosh-ball SSFP imaging sequence was used with the following parameters: $TR/TE/\alpha=4.2/2.1/60^\circ$, $FOV=270\times270\times270$ mm³, $1.5\times1.5\times1.5$ mm³.

red, segmented cardiac MRI was acquired on a fil. A 3D koosh-ball SSFP imaging sequence was 60°, FOV=270×270×270mm³,1.5×1.5×1.5mm³.

Fig. 1: Data consistency in the proposed method for non-Cartesian acquisitions.

Fig. 1: Data consistency in the proposed Method for non-Cartesian acquisitions.





G*s = k-space

(gridded measurements)

 \mathbf{K} = weights due to

gridding/regridding

(thresholded estimate)

I = uniform

weights (=1)

λβ*

Fig. 2: An example axial slice from a whole heart cardiac MRI dataset.

does gridding, regridding and de-apodization at every iteration, which was implemented on a GPU, using image domain thresholding and 100 iterations. A reconstruction using the proposed method with TV regularization is also provided for comparison.

<u>RESULTS:</u> Fig. 2 depicts an axial slice from the reconstruction methods. The proposed reconstruction and CG reconstruction yield similar results, with the former requiring a small number of iterations. The proposed reconstruction in image domain results in sharper, albeit noisier images compared to the TV domain regularized implementation.

<u>CONCLUSIONS</u>: An iterative technique for CS reconstruction from non-Cartesian trajectories is proposed. This technique requires only two gridding and one regridding operation irrespective of the number of iterations, and has a fast empirical convergence rate.

ACKNOWLEDGEMENTS: Authors acknowledge grant support from NIH R01EB008743-01A2, AHA SDG-0730339N, and Harvard Catalyst.

REFERENCES: [1]Block,MRM,2007; [2]Knoll,ISMRM,2009; [3]Sorensen,ISMRM,2010; [4]Wu,ISMRM,2010; [5]Bernstein,Academic Press,2004; [6]Chartrand,ICASSP,2010; [7]Yang,JSTSP,2010; [8]Wajer, ISMRM,2001; [9]Lustig,MRM,2010. *: First two authors contributed equally.