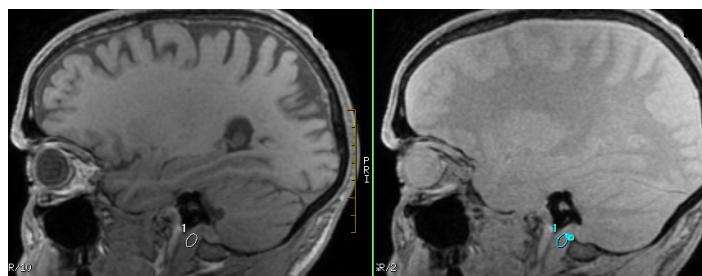
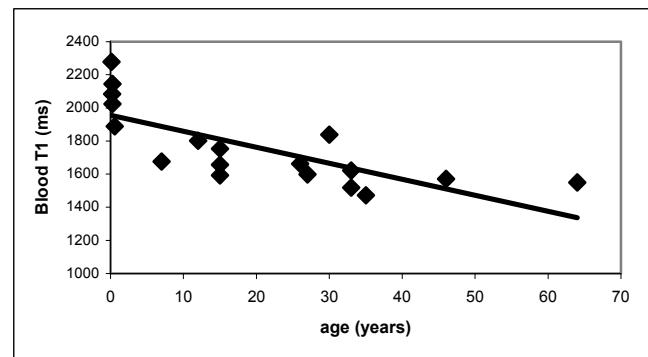


Fast blood T₁ measurement in children and adults


R. L. O'Gorman¹, C. Hagmann¹, H. Speckbacher¹, A. Shankaranarayanan², and E. Martin¹

¹University Children's Hospital, Zürich, Switzerland, ²Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States


Introduction: An accurate estimate of the T₁ of blood is necessary for reliable quantification of perfusion with arterial spin labelling (ASL) methods. Knowledge of the blood T₁ is particularly important for ASL studies in young children, where the decreased hematocrit and increased T₁ relative to typical adult values may lead to an overestimate of the perfusion. Recently, several fast T₁ mapping methods have been introduced which can be used to estimate the blood T₁ in vivo,^{1,2} but most of these methods require specialist pulse sequences, and to date blood T₁ values have not been reported in vivo for neonates or children younger than 7 years. Here we evaluate a fast T₁ mapping protocol based on the variable flip angle, spoiled gradient echo method.³⁻⁵ This protocol was tested in a group of 18 subjects, ranging in age from 7 weeks to 64 years, and the age dependence of the blood T₁ values was assessed.

Methods: The subject group consisted of 8 adults (4 male, age range 26-64) and 10 children (5 male, age range 7 weeks – 15 years), including four preterm neonates scanned approximately at term-equivalent age. Imaging studies were performed with a 3T GE HD.xt TwinSpeed MRI scanner (GE Medical Systems, Milwaukee, WI, USA), using an 8-channel receive-only head coil with a quadrature body transmit coil. Variable flip angle spoiled gradient-recalled echo (SPGR) images were acquired with a 3D fast sagittal SPGR protocol, with TE/TR = 1.6/5.5 ms, slice thickness = 2mm (interpolated to 1mm with ZIP2), matrix = 256x192, asset factor = 2, Nex=1, FOV 24 cm.^{3,4} For each subject, three SPGR volumes were acquired with flip angles of 2, 10, and 20 degrees, with identical gain and shim settings. Each volume took approximately 30 seconds to acquire, resulting in a total scan time of 90 seconds. From the linearised SPGR signal equation, the T₁ was calculated from a linear regression of $S_i/\sin(\alpha_i)$ vs $S_i/\tan(\alpha_i)$ where S_i represents the SPGR signal measurements for a given flip angle α_i , and the T₁ is given by $T_1 = -TR/\ln(m)$, where m is the slope of the regression line.³⁻⁵ For n=14 subjects the average T₁ for each subject was derived by discarding the minimum and maximum T₁ values from four regions of interest (ROIs) in the jugular veins and averaging the T₁ values for the remaining two regions. For the 4 neonates, the T₁ blood values were calculated from the average of the two median T₁ values derived from four ROIs in the transverse and sagittal sinuses.

Results: The mean T₁ measured for the 8 adults was 1600 ms, and the mean T₁ for the neonates was 2130 ms. The blood T₁ values decreased by approximately 9 ms each year over the age range 0-64 years, but this decrease was most pronounced in the first six months of age and appeared to approach adult values by age 15, in keeping with the age dependence of hematocrit values reported previously.^{6,7} The T₁ values measured over the age range 7-39 years are also consistent with those observed with a multiphase IR-prepared, balanced SSFP method.¹

Figure 1. Representative SPGR images acquired with flip angles of 10 degrees (left) and 2 degrees (right). An example ROI is shown in the jugular vein.

Figure 2. Age dependence of the blood T₁ values.

Discussion: These results demonstrate that fast blood T₁ measurements can be reliably performed in young children, using a standard 3D SPGR sequence with multiple flip angles. While this method does not account for B₁ inhomogeneity effects, the T₁ values estimated using this protocol are in good agreement with those derived using inversion recovery or SSFP methods,¹ and the relative differences in blood T₁ with age are consistent with the range in hematocrit values reported over a comparable age range.^{6,7} This protocol also offers the advantage of wide availability on any scanner, as it does not require implementation of a specialist pulse sequence.

References: ¹Wu WC et al. *MRM* 64: 1140-1147 (2010), ²Qin Q and van Zijl PC. *Proc ISMRM* 17 (2009), 3624. ³Cheng HM and Wright GA. *MRM* 55:566-574 (2006), ⁴Cheng HM. *JMRI* 25:1073-1078 (2007), ⁵Deoni SC et al. *MRM* 49:515-526 (2003). ⁶Jopling J et al. *Pediatrics* 123:e333-e337 (2009), ⁷Yip R et al. *Am J Clin Nutrition* 39:427-436 (1984).