

Paraformaldehyde and glutaraldehyde fixations preserve manganese enhancement in ex vivo mouse brain MRI

Y. Liu¹, L. Poluektova², B. Sajja¹, H. Gendelman², and B. Michael¹

¹Radiology, UNMC, Omaha, NE, United States, ²Pharmacology/Exp Neuroscience, UNMC, Omaha, NE, United States

Introduction. Manganese enhanced MRI (MEMRI) for *in vivo* bioimaging is limited in spatial resolution and signal sensitivity. This is due, in part, to limited scan times[1]. Importantly, *ex vivo* brain MRI can achieve superior resolution and signal-to-noise ratio through increased signal averaging and the use of solenoid RF coils optimized to brain size. Maintenance of *in vivo* manganese enhancement for *ex vivo* MRI was developed using different fixation methods including cross-linking chemicals and focused beam microwave irradiation (FBMI).

Methods and Materials. Twelve mice (NOD/scid) were administrated MnCl₂ through tail veins then scanned by MRI 24 hours later (fast spin echo with variable TR for T₁ mapping, and fast spin echo with TR = 300 ms for T₁-wt). The animals were then killed and the mouse brains soaked in the s4% paraformaldehyde (PFA) + 0.1% glutaraldehyde (GA) (Fixative I, n = 3), 1.5% GA (Fixative II, n = 3), or 3% GA (Fixative III, n = 3). FBMI was used on each of the remaining three mice. Fixed brains were scanned again *ex vivo* to measure relaxation times and to acquire MR images. Another group of three mice was scanned for baseline measurements, and fixed without MnCl₂ infusion. Fixed brains were then harvested and soaked in a 0.24 mM MnCl₂ solution [2]. The tissue relaxation times of these brains were measured after seven days, and T₁-wt MRI were acquired using fast spin echo with TR = 60 ms. All T₁-wt MRI was acquired with 3D isotropic 100 μ m resolution.

Results. T₁ values and T₁-wt signal on major neurostructures Mn²⁺ generated significant T₁ reduction ($p < 0.05$) in *in vivo* MRI scans (Table 1). All chemical fixations did not demonstrate any significantly change in T₁ compared to Mn²⁺ enhanced (ME) *in vivo* measurements. FBMI fixed animals showed reduced T₁ values. No significant differences were found between the structures in FBMI mice. (Table 1, Figure 1). Significant T₁ reductions on basal ganglia (BG), thalamus (TH) and midbrain (MB) compared to cortex (CTX) on mice fixed using Fixative I and II are shown in Tab 1 (ab* : $p < 0.05$). In Fig 1, similar relative signal intensity patterns could be observed on ME *in vivo* and *ex vivo* MRI of chemically fixed animals (only fixative I is shown in Fig 1): higher signal intensity on BG, TH and MB than on CTX; and similar intensity on BG, TH and MB. In FBMI fixed mice, T₁-wt signal contrast has been lost. The brains soaked in MnCl₂ showed higher T₁-wt intensity on CTX compared to BG, TH and MB.

T₁ values and T₁-wt signal on sub-structures Manganese induced great T₁ reduction on several sub-structures in *in vivo* MRI (Tab 2). In all ME *in vivo* and *ex vivo* measurements on mice fixed using chemicals, T₁ values were significantly lower on the granular layer of dentate gyrus (GrDG) and the pyramidal layer (Py) compared to CA regions. Similarly, the cerebellar cortex (CBX) granule cell layer (GrCBX) has lower T₁ than other layers of CBX ("CBX other" in Tab 2). The signal enhancement on Py and GrDG is preserved on *ex vivo* MRI (Fig 2). The 10 cerebellum lobules can be clearly identified on *in vivo* and *ex vivo* T₁-wt MRI of chemically fixed brains (Fig 3). The granular layer of CBX obtained higher enhancement compared to others including the molecular cell and Purkinji cell layers (Fig 3). In the soaked brains, GrDG and Py were enhanced less compared to CA regions, and the granular layer of CBX was not enhanced compared others.

Discussion The results of T₁ measurements and T₁-wt MRI indicated that *in vivo* localization of Mn²⁺, the binding of Mn²⁺ to macromolecular structures, and the longitudinal relaxation mechanism of Mn-macromolecule compounds in brain tissue were not significantly affected by the chemical fixatives. It has been proven that microwave can preserve metabolites in the brain for a considerable period of time. The loss of signal contrast among neurostructures suggests that microwave heating causes opening of the ion channels in neurons, causing dispersion of Mn²⁺. The measurements on brains soaked in MnCl₂ generated similar results in a previous study[2]. Contrary to *ex vivo* MRI of chemically fixed brains, the soaked brains showed higher T₁-wt signal intensity on CTX than BG and TH. One reason could be that the diffusion of Mn ions was impeded. The other reason may be that cortex has more binding sites for Mn ions than basal ganglia and thalamus. Nevertheless this study has shown that cross-linking fixations preserve the Mn²⁺ enhancement.

References 1. Akoi et al., Neuroimage. 2004 Jul;22(3):1046-59., 2. Huang et al. Neuroimage. 2009 Jul 1;46(3):589-99

Table 1. T₁ values on major neurostructures

	CTX	BG	TH	MB
Baseline	1742 \pm 62	1679 \pm 43	1599 \pm 57	1571 \pm 47
ME In vivo	1123 \pm 29	997 \pm 30 ^b	989 \pm 43 ^b	961 \pm 44 ^b
Fixative I	1086 \pm 55	916 \pm 94 ^b	931 \pm 16 ^b	808 \pm 85 ^b
Fixative II	1080 \pm 6	904 \pm 42 ^b	896 \pm 27 ^b	982 \pm 33 ^b
Fixative III	1125 \pm 59	1002 \pm 25 ^b	1028 \pm 56 ^b	1118 \pm 29
FBMI	954 \pm 55 ^a	892 \pm 54	859 \pm 17	817 \pm 4

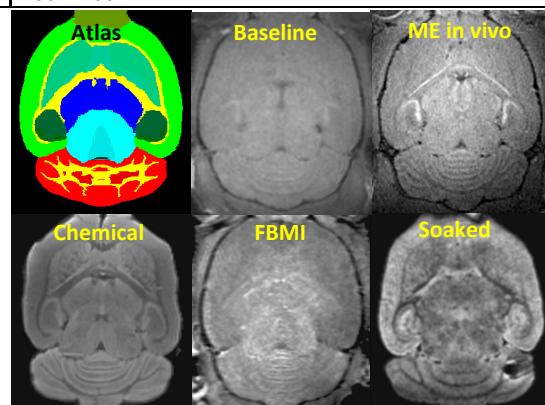


Figure 1. Axial slices of T₁-wt MRI showing CTX, BG, TH and MB

Table 2. T₁ values on sub-structures

	GrDG/Py	HIP-CA	GrCBX	CBX other
Baseline	1668 \pm 22	1798 \pm 67	1634 \pm 52	1729 \pm 54
ME In vivo	809 \pm 42	1269 \pm 44	893 \pm 36	1212 \pm 61
Fixative I	943 \pm 69	1186 \pm 80	839 \pm 38	1145 \pm 38
Fixative II	854 \pm 32	1162 \pm 36	945 \pm 9	1179 \pm 41
Fixative III	1015 \pm 6	1274 \pm 63	1027 \pm 28	1283 \pm 63

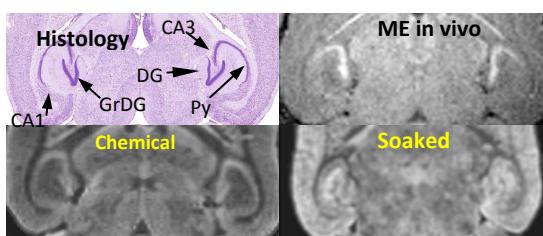


Figure 2. T₁-wt MRI showing hippocampus

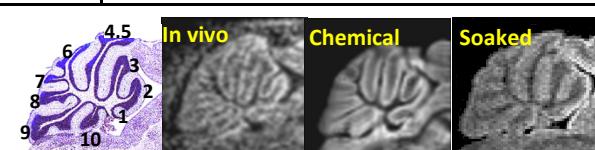


Figure 3. Sagittal slices of T₁-wt MRI showing cerebellum