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Introduction: Cross-relaxation imaging (CRI)' is a method for quantitative mapping of the parameters describing the kinetics of magnetization transfer (MT) between
mobile water protons (free pool) and macromolecular protons (bound pool) based on the two-pool model.? While all parameters of the two-pool model (specifically, the
bound pool fraction f; the rate constant k, and the transverse relaxation times of the free and bound pools 75" and 7,°) can be determined using an appropriate CRI
experimental design with a sufficiently large number of measurements,> recent studies have been focused on the development of faster acquisition techniques allowing
determination of subsets of two-pool model parameters from a limited number of experimental points based on certain theoretical approximations."** One of these
parameters, the bound pool fraction fis of special interest, since it provides direct measurement of the portion of macromolecular protons causing the MT effect and is
indicative of the total content of macromolecules in tissues. CRI has demonstrated a strong correspondence between fand major fiber tracts in the human brain in vivo'.
Recently, a time-efficient methodology for single-parameter bound pool fraction mapping from two off-resonance MT measurements has been proposed”® based on
constraining other model parameters (specifically, 75°, the product 7,"R,, and the inverse rate constant k(1-f)/f) with their average-brain values. While this approach has
a good clinical perspective due to fast acquisition and high quality of resulting f'maps, it has not been not validated in the context of the effects of parameter constraints
and histological correlations of observed fvalues. In this study, we first aimed to determine associations between the bound pool fraction obtained by either the full two-
pool model fit or the fast single-parameter method”® and key histology features (myelin density, axonal content, and cellularity) in the normal rat brain and C6 glioma
model in vivo. Second, we sought to identify optimal parameter constraints for the fast f mapping method”® and characterize its accuracy for brain imaging at 3.0 T.
Methods: MRI protocol: Five healthy adult male rats were imaged and four adult male rats were imaged two weeks after intracranial inoculation with C6 cells. Rats
were anesthetized with isoflurane and imaged on a 3.0 T Philips Achieva whole-body scanner (Philips, Best, Netherlands) with a T/R head coil for RF transmission and
an in-house built combined solenoid-surface coil® for RF reception. Fifteen pulsed Z-spectroscopic data points with variable offset frequencies (A) of the off-resonance
saturation pulse (A = 0.6, 1, 2, 4, and 8 kHz; duration 18 ms) and effective flip angles of 650°, 800°, and 950° were acquired with a 3D spoiled gradient echo pulse
sequence (TR/TE = 42/4.6 ms, o = 10°) as previously described.'* A reference image for data normalization was obtained with A = 96 kHz (no MT effect is observed at
this frequency) for each effective flip angle to ensure that the transmitter operated with identical gain settings. A complementary R, map necessary for parameter fitting
was obtained using the variable flip angle (VFA) method with a 3D spoiled gradient echo sequence (TR/TE =20/2.3 ms, o =4, 10, 20, and 40°). All Z-spectroscopic
and VFA images were acquired with FOV = 29x29x19.8 mm, matrix = 97x97x66, resolution 0.3x0.3x0.3 mm (zero-interpolated to 0.15x0.15%0.15 mm). Scan time
per excitation was 4.4 minutes and 2.1 minutes per point for Z-spectroscopy and VFA, respectively. Whole-brain B, and B, maps were acquired to establish actual off-
resonance of the saturation pulse and determine actual flip angles during parameter fitting as previously described.* Total scan time for all images was 111.4 minutes.
Image analysis: ROIs from within a total of nine gray matter (GM) and white matter (WM) structures were used for four-parameter fitting (%, £, 75", and T5%) of 15-pt
data. Identical ROIs were used for one-parameter fitting (f) using 2-pt data (950°; A = 4 and 8 kHz) and constraints for other parameters derived from the four-parameter
fit. Myelin density, axon content, and cellularity were determined from corresponding anatomic structures on histology sections stained with Luxol-Fast blue,
Bielchowsky’s silver impregnation, and hematoxylin & eosin, respectively. Pearson’s correlation coefficient, », was used to compare CRI parameters to histology and to
compare f'derived from four- and single-parameter fittings. Simulation-based error analysis using an established model of CRI' was done to determine effects of
constraints derived from normal tissues on one-parameter fitting of normal and pathologic tissue data similar to the earlier publication.* Bound pool fraction values
derived from four-parameter and one-parameter fits were subsequently compared.

Results: Histology validation: The bound pool fraction derived from the four-parameter fit was strongly associated with myelin density (» = 0.99, p<0.001), which
persisted in separate analyses of GM (r = 0.89, p = 0.046) and WM (» = 0.97, p = 0.029). Similarly, there was a strong association between 2-pt, single-parameter fit of /
and myelin density in all normal brain tissues (r = 0.99, p<0.001), and separately in GM (» = 0.91, p = 0.030) and WM (r = 0.95, p = 0.047). The regression equation
defining the association between f and myelin density (MD; f= 0.21xMD + 3.9) was used to construct whole-brain myelin maps (Figure 1). In brains with tumor
present, effects of tumor infiltration were visualized on f“maps and myelin maps (Figure 2). Significant associations with f'were not identified for the other histology
parameters nor were other CRI parameters significantly associated with histology.

Accuracy of fast f mapping: The mean values from non-tumor tissues of 7%, the product 7,"R,, and the constant k(1-f)/f determined for single-parameter fitting were
10.7 ps, 0.030, and 29 s, respectively. Comparing ROI-based results in non-tumor tissue from 15-pt, four-parameter fit and the 2-pt, single-parameter fit of / yielded
strong associations across all structures (» = 0.996, p < 0.001), as well as separately within GM (r = 0.98, p = 0.003) and within WM (= 0.97, p = 0.031). Errors
consequent of parameter constraints in WM, GM, and tumor from simulations were <10%. A comparison of values for f'between four- and single-parameter fit for in
vivo rat brain gliomas was within this expected margin (N=4; mean+SE; 3.9+0.2% vs. 4.0+0.2%, respectively).
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