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Introduction 
In this abstract we introduce a novel method to model disease progression using cross-sectional data. Diseases typically develop through a number of stages, which can 
be characterized by patient symptoms and by the changes on the cellular level that cause these symptoms. An understanding of disease progression is crucial for earlier 
and improved diagnostic accuracy and for targeted treatment strategies. Detailed investigations of disease progression usually rely on longitudinal data that maps the 
entire disease progression for each patient. Cross-sectional data, on the other hand is much more convenient to collect, but only provides incomplete information about 
disease progression for each patient. Crude descriptions of disease progression can be obtained from cross-sectional data by classifying patients with similar symptoms 
into several (typically 3 to 4) disease stages and computing average measurements at each stage [1]. The key innovation of our algorithm is that it models disease 
progression as a series of events. We treat the data of each patient as a snapshot of this process in which some events have occurred and others have not. Then we 
determine the most likely series of events, given the patients’ data. We demonstrate this approach on serial MRI data from a familial Alzheimer’s disease (fAD) cohort, 
where the events are the onsets of atrophy in cortical and subcortical regions. We show progression on a much finer level than previous studies, confirming progression 
patterns from earlier pathological studies. 
Theory 
The disease progression model consists of two stages: the event detection stage and the event ordering stage. The event detection stage determines the probability that 
an event has occurred within each subject. The ordering algorithm constructs candidate sequences of events and uses the probability that events have occurred in each 
patient to calculate the likelihood of a sequence. We use a Markov Chain Monte Carlo algorithm to sample from the posterior distributions on the sequences.  
In the case of the fAD data, we determine the probability of significant atrophy (which is the event of interest) by fitting a Gaussian mixture model [2] to the 
distribution of atrophy values in controls and patients and by calculating the probability that a data point (i.e. a regional atrophy value within a patient) is a member of 
the ‘significant atrophy’ component of the distribution. The MCMC algorithm uses 20 chains, 104 burn-in iterations, which we discard, and 105 MCMC iterations. 
Methods 
Data 
The fAD data we use has been previously analyzed in Ridha et al [3]. Briefly, nine carriers of autosomal mutations associated to Alzheimer's disease were recruited 
together with 25 age-matched and sex-matched controls. After informed consent was given all mutation carriers underwent neuropsychological assessments, including 
the mini-mental state examination and volumetric MRI scans at each visit (41 visits: three to eight per patient). Each control patient had 2-4 MRI scans adding up to 54 
scans in total. The images were acquired using a 1.5 T GE Signa MRI scanner using a SPGR sequence with the following parameters: (256x128 matrix, FOV=24x24 
cm, TR/TE/NEX/FA=35ms/5ms/1/35°) yielding 124 contiguous 15 mm thick slices. We refer to Ridha et al. [3] for a more detailed description of this data set. 
Although this data set is longitudinal in nature, we treat each follow up scan as a measure of volume change from baseline and we discard the information about the 
temporal ordering of the follow up scans. 
Preprocessing 
The MRI image of each time-point is non-linearly registered to the baseline scan, using a free-form deformation method as described by [4]. We use the determinant of 
the Jacobian of the deformation field as a measure for expansion/contraction. We use Freesurfer to parcellate the cortex into 70 cortical regions, using anatomical 
landmarks and we compute the mean Jacobian for each region in each patient. 

 
Figure 1.Results of the events ordering algorithm. The circles indicate the order of the regions along the horizontal axis. The vertical displacement is purely to avoid 
overlap. Each image contains a snapshot of the atrophy pattern. Red areas are newly atrophied areas and green regions show no significant atrophy. 

Results and Conclusions 
Figure 1 shows the sequence of atrophy occurrence in fAD. The first regions to show significant atrophy are 
the hippocampus, the precuneus and the inferiorparietal cortex, followed by temporal regions, such as the 
entorhinal cortex. In the next stage of the progression pattern more and more parietal and prefrontal areas are 
affected. Only in the last stage are primary cortices, such as the primary motor cortex affected. This 
progression pattern broadly agrees with how neurofibrillary tangles (NFTs) spread through the brain as 
demonstrated by Braak and Braak[5]: The main difference lies in the early involvement of the precuneus and 
other parietal areas. Our findings are however concordant previous studies by for instance Scahill et al., who 
have also shown early involvement of these structures. Figure 2 shows a histogram of the position of each 
area in the MCMC chains, which gives an indication of the uncertainty associated with each position. This 
uncertainty increases in the later stages of the disease, because there are fewer data points from patients in 
these stages of fAD. 
In conclusion, we have introduced a novel method for determining patterns of disease progression from 
cross-sectional data. When applying this method on structural MRI data from a fAD cohort, we show 
patterns of disease progression which where until now only available from post-mortem studies of pathology. 
Our model should therefore be very useful modeling diseases and understanding their natural history. 

 

01: Hippocampus 
02: bankssts 
03: caudalanteriorcingulate 
04: caudalmiddlefrontal 
05: corpuscallosum 
06: cuneus 
07: entorhinal 
08: fusiform 
09: inferiorparietal 
10: inferiortemporal 
11: isthmuscingulate 
12: lateraloccipital 

25: precentral 
26: precuneus 
27: rostralanteriorcingulate 
28: rostralmiddlefrontal 
29: superiorfrontal 
30: superiorparietal 
31: superiortemporal 
32: supramarginal 
33: frontalpole 
34: temporalpole 
35: transversetemporal 

13: lateralorbitofrontal 
14: lingual 
15: medialorbitofrontal 
16: middletemporal 
17: parahippocampal 
18: paracentral 
19: parsopercularis  
20: parsorbitalis 
21: parstriangularis 
22: pericalcarine 
23: postcentral 
24: posteriorcingulate 
 

 

Figure 2: Histogram of regions’ position  in all 
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