

Longitudinal TBSS reveals progressing demyelination in the mouse model of progressive neurodegenerative disease EPM1

O. H. Manninen¹, T. Laitinen², O. Kopra¹, O. Gröhn², and A-E. Lehesjoki¹

¹Folkhälsoinstitutet of Genetics and Neuroscience Center, University of Helsinki, Helsinki, Finland, ²Department of Neurobiology, University of Eastern Finland, Kuopio, Finland

Introduction - Unverricht-Lundborg disease is an autosomal recessive neurodegenerative disorder (EPM1, OMIM 254800), with onset in humans at the age of 6 to 18 years. It is characterized by severe incapacitating stimulus-sensitive myoclonus, tonic-clonic epileptic seizures and ataxia. Mutations in the gene encoding Cystatin B (CSTB) underlie EPM1, but many of the neurological processes leading to observed symptoms remain unknown. In order to gain a better view and understanding of the neurological changes underlying the array of symptoms in the EPM1, we used a murine model of the disease, the *Cstb* gene-targeted mouse (the *Cstb*-/- mouse model) to study the disease [1]. EPM1 patients have been shown to undergo gray matter changes [2], and track-based spatial statistics [3] (TBSS) analysis of diffusion tensor imaging (DTI) data from both adult EPM1 patients [4], and adult (6 months) *Cstb*-/- mice [5], have shown decreased fractional anisotropy (FA) in several brain regions especially in cerebellum and thalamus, with mouse histology revealing reduced myelin in these areas. In this study we wanted to determine how the white matter (WM)-changes progress with the disease, and whether the lower myelin presence at 6 months was caused by demyelination or dysmyelination. To accomplish this we performed a TBSS analysis of FA comparing the *Cstb*-/- wild type controls at timepoints of 2, 4 and 6 months of age. TBSS has recently been implemented to longitudinal follow-up in patients with neurodegenerative changes [6], but to our knowledge the approach has not been implemented to an animal model.

Figure 1. Development of WM-lesions in *Cstb*-/- mice: FA decrease in *Cstb*-/- mice as compared to *Cstb*+/+ controls analyzed with TBSS. Areas of significantly lower FA ($p < 0.05$) shown in red and yellow, projected on the study specific mean FA images. a) Age 2 months, b) Age 4 months, c) Age 6 months

The data also indicate that until 2 months of age, the WM is relatively normal in *Cstb*-/- mice, showing no lesions detectable with FA TBSS. At 4 months cerebellum and thalamus had discernible WM-lesions and the degeneration progresses to 6 months of age, indicating that WM-lesions in *Cstb*-/- mice are a result of demyelination, and not dysmyelination, corresponding with the neurodegenerative disease course in EPM1. WM-lesions also appear to be secondary in the disease as the changes at 4 months are preceded by myoclonus in *Cstb*-/- mice at 1 month of age [1]. As TBSS of DTI data in adult EPM1 patients [3] has also shown FA changes at cerebellum and thalamus, our data suggest that the WM-changes seen in EPM1 patients could also result from demyelination.

References: [1] Pennachio L.A. et al., *Nat Genet* 20 (1998) 3:251-258, [2] Koskenkorva P. et al., *Neurology*. 73 (2009) 8:606-611, [3] Smith S.M. et al., *NeuroImage* 31 (2006) 1487-1505, Smith S.M. et al., *Nature Protocols* (2007) 2 499-503, [4] Koskenkorva P. et al., *RSNA* 2008 abstracts, # SSE17-01, [5] Manninen O.H.H et al., *ISMRM* 2009 # 545, [6] Raz E. et al. *Radiology* 257 (2010) 2:448-454, [6] Jenkinson M. et al., *NeuroImage* (2002) 17 825-841, [7] <http://www.fmrib.ox.ac.uk/fsl/>