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Introduction: Pulsed field gradient diffusion sequences with multiple diffusion encoding blocks have recently gained renewed interest in the magnetic resonance 
community. Some of the properties that appear promising in terms of applications are the ability to measure pore sizes, detect anisotropic pores in macroscopically 
isotropic media, and the enhancement of diffraction peaks [1-3]. Here we consider the cumulant expansion of the double wave vector diffusion signal, and introduce the 
displacement correlation tensor [4]. This formalism leads to a number of new theoretical insights, for example enabling the detection of fiber curvature [4], or allowing a 
precise and compact description of the interplay between compartmental anisotropy and ensemble anisotropy. We demonstrate this latter property by comparing to 
simulations of diffusion in distributions of ellipsoidal pores. 
Theory: Under the narrow pulse approximation, Eq. (1) expresses the normalized signal from the double wave vector diffusion sequence (Fig. 1) with diffusion wave 
vectors q1 and q2, where ( ) ( )1 0= Δ −R r r  and ( ) ( )2 2 τ τ= Δ + − Δ +R r r  are the spin 
displacements during the two diffusion epochs, and Greek subscripts label Cartesian 
components with sum over repeated indices implied. The tensor ( ) 1 2Q , R Rαβ α βτΔ =  is 
an explicit measure of correlation between spin displacements in the two periods – the 
displacement correlation tensor. It can be extracted conveniently using pairs of double 
diffusion wave vector experiments by fitting to Eq. (2).  In the short diffusion time 
regime, Q is sensitive to the pore space surface to volume ratio S/V, as shown by  Eq. (3) 
for τ = 0. In the large diffusion time regime on the other hand, -Q approaches the radius of 
gyration tensor, ( )Q r r Dα β αβ τ τ− ≈ − . Here we consider Q in an ensemble of identical pores of prolate ellipsoidal shapes, where Q is given by Eq. (4) in which I is the 
identity matrix,T is the scatter matrix of the orientation distribution, and A and B are eigenvalues of the single pore displacement correlation tensor. Thus, Q encodes 
information about orientation distribution properties (e.g. ensemble anisotropy) via T, and pore shape (e.g. microscopic anisotropy) via A and B. 
Methods: Simulations for diffusion in ellipsoids were implemented in Matlab using Monte Carlo methods with 500,000 particles, a diffusion constant of 2 µm²/ms, and 
time step 0.001 ms. The ellipsoids were cylindrically symmetric with a long axis of 10 µm and short axis 5 µm. 500 unit vectors were generated from a Watson 
distribution with concentration parameters between 0 and 33, and were used as the directions of the long axes of 500 ellipsoids. The parallel and anti-parallel double 
wave vector diffusion experiment with τ = 0 was simulated for a wave vector magnitude of 0.1 µm-1 and diffusion times 2 and 10 ms. Half the hemisphere of the "24 
point spherical 7-design" (set of 24 directions [5]) was used as the basis for selecting the directions of q, and a nonlinear least squares Levenberg-Marquardt fitting 
procedures supplied by Matlab was used on Eq. 2 to estimate Q. The scatter matrix T was estimated empirically by averaging the outer product over the 500 unit 
vectors. Eigenvalues of Q and T were matched by matching the eigenvectors, and values for A(Δ) and B(Δ) were obtained numerically by diagonalizing Q obtained from 
a single ellipsoid. 

  
Results: In Figs. 2 (Δ=2ms) and 3 (Δ=10ms), we demonstrate the linear relationship between the eigenvalues of Q and T expected from Eq. 4 (solid line). The 
simulations are in excellent agreement with the theory. Note that the slope of the line depends on the diffusion time, and can be either negative or positive. One 
consequence of this is that for a certain diffusion time, the signal will not depend on the scatter matrix, and the signal will thus appear as if arising from spherical pores. 
Conclusions: We introduced the displacement correlation tensor on the basis of the Gaussian approximation to the double wave vector diffusion signal. A number of 
interesting properties were noted. In particular an exact formula revealing the dependence of the signal on compartmental and ensemble characteristics was presented. 
This result was corroborated by numerical simulations of diffusion in ellipsoids. The results contribute to the understanding of the properties of the double wave vector 
diffusion experiment, and can be potentially used to characterize pore shape and dimensions, and to separately characterize compartmental anisotropy and ensemble 
anisotropy. 
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