Time-dependent diffusion and kurtosis as a probe of tissue structure
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Introduction: Diffusion coefficient in tissues is known to depend on the diffusion time ¢. The particularly strong time dependence D(¢) has been
demonstrated in cartilage [1], packed red blood cells [2], gray matter [3], and tongue and heart muscles [4]. There exist two regimes for the time-
dependence of D(¢). The short-time limit may be used to characterize individual restrictions (e.g. surface area of pore walls) [5,2]. However, it often
requires prohibitively short times, especially for clinical DWI. Here we focus on the opposite, long-time limit of D(t), and argue that this limit probes
the degree of the structural order in a medium (tissue).

Results: At long #, the molecules travel across multiple structural features (e.g. membranes, cells with different local diffusivities). At this point, the
spatial fluctuations of the tissue microstructure become essential, and the DWI signal becomes sensitive to whether the microarchitecture is regular
(periodic) or random, and to the degree of such randomness. The effect of structural fluctuations on D(¢) can be elucidated by the following coarse-
graining procedure in which the tissue is being gradually homogenized over the diffusion length L(£)~¢"? increasing with .

Here we outline our qualitative picture, which is backed by a rigorous
derivation, for any permeable medium. For a given time ¢, the diffusion length L(7) v ) D, @D,
effectively splits a sample into domains of size L(¢) (see the top Figure), assigninga ::4 X f.ﬁ.- R :'{-'g ,:i,
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coarse-grained diffusion coefficient D, to each domain (labeled by v=1,2,...). The ¥
values D, are not all the same due to structural fluctuations. The “instantaneous” .
diffusivity D(f) measured by DWI is then the ensemble average over the domains,
D(t) = < Dv> L Remarkably, this quantity can be expressed via the variance
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in d spatial dimensions. In the last equation we used the fact that the variance «(8D,)> is

also proportional to the diffusional kurtosis K(#) [6] at the current time scale . Indeed, ¢ = 10° 1
.. . . . . . S less permeable,
serves as an initial time scale for the coarse-grained medium, for which the short-time 5 =10
kurtosis limit [6] applies. =
Our result (1) is very general and applies for any permeable medium, e.g. for any TNl Ty
tissue with permeable membranes. It is asymptotically exact when the right-hand side isa & | e N0 oy
small correction, which is always valid for sufficiently long ¢. Indeed, as L(t)~t”2 5 . more permeable,
increases, the width of the distribution of the values {D,}, caused by the presence of Q‘ 10 =4
structural fluctuations, decreases with time due to the gradually improving self- <
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averaging. This explains why the genuine diffusion coefficient D(t) cannot grow with t,
and any ADC increase is either a sign of magnetic heterogeneity or an artifact. Hence, the
structural fluctuations determine the z-dependence of the diffusivity at long ¢ via the
scaling of the variance «(0D,)> with the diffusion length L(?). S
In particular, the decrease in equation (1) is D(¢) — D,, ~ K(£) ~ 1/¢' for any random 10104 160 ¢ 10’ 10°
placement of flat permeable barriers with Poissonian fluctuations [7], and D(f) — D,, ~
K(t) ~ 1/t for any periodic arrangement in any dimension (no fluctuations), generalizing [8]. The factor C in equation (1) depends on the statistics of
the fluctuations and spatial dimensionality d. For d=1, we find C=1/2 for any Poissonian disorder (random barriers, randomly varying local
diffusivity, etc) irrespective of the microscopic details such as barrier permeability, disorder correlation length etc. For the periodic case, C depends
on the microscopic details. For identical periodic barriers in d=1, C=1/6.
Our results are confirmed in the bottom Figure by the one-dimensional Monte Carlo simulations of diffusion restricted by identical barriers with a
fixed mean density #, arranged either in a periodic or in a random fashion. The power law exponent both for D(¢)-D., and K(f) changes from -1/2 to -
1 as the system becomes ordered. Time is in the units of the residence time zz=1/2xn) in a typical interval between successive barriers, and the
dimensionless parameter (=nDy/x [7] is a measure of barrier permeability x, with D, the unrestricted diffusion coefficient. We observe that, as # >> zp,
equation (1) becomes asymptotically valid irrespective of the microscopic details (e.g. change in «).
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Discussion: The time-dependence of the diffusivity and kurtosis can be used to probe long range tissue architecture, and to determine how ordered or
disordered it becomes at increasing length scales. The deviation of K(«) from zero, when equation (1) does not apply, points at the fraction of water
confined within cells with impermeable membranes; in that case, our relation applies separately to the contribution(s) of the unrestricted
compartment(s). In particular, our exact results in d=1 for the factor C, together with the exact prefactor 4 in D(f}-D,=Ar"? can allow one to
determine structural irregularities along fibrous tissues, such as the parameters of neuritic beading or axonal varicosities, from the ~-dependent DWI.

Conclusions: In this work, we showed that: (i) the way D(¢) approaches its terminal value D, is determined by how homogeneous the sample
gradually becomes after being coarse-grained over an increasing set of diffusion lengths L(%); (ii) both D(¢) — D,, and the time-dependent diffusional
kurtosis K(f) approach zero in the same way, equation (1), if water molecules can travel everywhere in a sample (permeable restrictions). Our results
agree with Monte Carlo simulations in one dimension, and can be applied to characterize structural tissue composition over large diffusion lengths.
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