Model-Based Reconstruction of Undersampled DTI Data
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Introduction: Diffusion Tensor Imaging (DTI) [1] is useful for characterizing tissue microstructure, allowing determination of, for example, fiber
orientations of the myocardium or brain white matter that are not evident in conventional MRI. DTI requires a minimum of seven scans of the same
image to fully solve the diffusion tensor. The low temporal resolution and the associated low spatial resolution and SNR present a significant
challenge for the practical utility of the technique. To accelerate the acquisition time, strategies for undersampling and iterative reconstruction of DTI
data have been proposed [2]. Rather than first reconstructing the diffusion weighted images then fitting the tensors, in the current study diffusion
tensor fields are directly estimated from k-space data via model-based reconstruction. The rationale is that better performance might be achieved by
direct estimation and estimating fewer unknowns in the reconstruction. Model-based reconstruction algorithms have been proposed for DTI [3-4], but
not for undersampled data.

Methods: Model-based reconstruction of undersampled data is performed by fitting the diffusion tensor D directly to the acquired data via
minimizing the L2-norm cost function in Eq. (1), where W is the undersampling matrix, F is the Fourier operator, /; is the non-diffusion weighted
reference image, b is the diffusion weighting factor, g, is the diffusion encoding directional vector, ¢, is the image phase and d, is the measured k-
space for the n™ diffusion direction. Minimization is done by first computing the derivative 8C(D)/8Dij of Eq. (1) with respect to the ij™ element of
the tensor, then updating it using a step size 4 according to the gradient descent algorithm in Eq. (2). The process is repeated until all parameters have
converged, in which Eq. (1) has reached a minimum.
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To test the performance of the proposed approach, fully-sampled Cartesian k-space DTI (95 encoding directions) was acquired on a fixed, excised
macaque brain hemisphere using a Bruker 7T scanner. A subset of images encoded in 12 directions was chosen, phase-corrected, and based to
simulate undersampling using an accelerating factor R of 2 but different patterns, including variable density (MBVD), center only (MBC) and center
offset (MBCO). Performances of sampling schemes and reconstruction were assessed by comparing the mean white matter fiber orientation deviation
(Aa), root mean squared (RMS) error of the fractional anisotropy (FA) and mean diffusivity (MD) over the whole hemisphere to those obtained from
12- and 6-image fully-sampled datasets, against the entire 95-image “gold standard”.
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Results and Discussion: Figure 1 demonstrates the FA maps and Table 1 lists the quantified performance metrics for the cases discussed. All
reconstruction schemes converge within 1000 iterations, taking approximately 5 minutes on a machine with a Quad-Core processor and 4GB RAM.
Overall, performances of the model-based reconstruction for estimating the white matter orientation and FA are generally comparable to the 12-image
fully sampled case and are better than the 6-image case, which serves as the control based on equivalent acquisition time. The performances for
estimating the MD is less impressive, possibly because unlike the case of fiber orientation or the FA, estimation biases in the diffusivities do not self
normalize. For all DTI parameters, minor differences in the performance are observed among the model-based schemes. Specifically, the MBCO
case performs the best in terms of Ao and RMS FA, whereas MBVD has the best RMS MD. These observations suggest that DTI scan time is better
spent acquiring partial k-space of more directions than full resolution of fewer directions, and that different regions of k-space may contribute
differently toward the accuracy in estimating different DTI parameters.

Conclusion: The model-based algorithm is a promising reconstruction method for undersampled DTI data, capable of achieving comparable accuracy
for estimating the DTI fiber orientation and FA but requiring only half of the acquisition time, in the case of phase-corrected data. Phase correction
doesn’t affect the results of MBC, but future work will be in estimating image phase for the other sampling schemes. Different regions of k-space
appear to contribute to DTI accuracy unequally, which warrants further investigation.
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Table 1. Metrics of performance in terms of estimation error
for DTI parameters compared against the 95-image “gold
10.8 standard” dataset. Angular deviation Aa and RMS MD are
reported in degrees and 10~ cm?/s, respectively. RMS FA is

dimensionless.
Scheme Aol RMS FA RMS MD
MBVD 8.66 0.0479 0.0057
MBC 7.28 0.0403 0.0077
MBCO 6.94 0.0361 0.0086
6 full img 14.05 0.0790 0.0074
12 full img 8.70 0.0445 0.0046
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Figure 1. FA maps for (a) 95 directions “gold standard”, (b) 12-direction full 19egzre[nzc]esA d[lu]m éssz alJ ENaCS 41&3%6}'/;1{99 20097 [;]

images, (c) 6-direction full images as control (d) model-based variable density Yendiki A. P ISBI. 924-927. 2 41 Ch ka AB
(MBVD), (e) model-based centric sampling (MBC), and (f) model-based aler;/(:;gln R’esf)(iicimiging 22.91;9’_13%7'2%0]4C cryauxa ot

center with offset (MBCO).

Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 1943



