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Introduction: Diffusion Tensor Imaging (DTI) [1] is useful for characterizing tissue microstructure, allowing determination of, for example, fiber 
orientations of the myocardium or brain white matter that are not evident in conventional MRI. DTI requires a minimum of seven scans of the same 
image to fully solve the diffusion tensor. The low temporal resolution and the associated low spatial resolution and SNR present a significant 
challenge for the practical utility of the technique. To accelerate the acquisition time, strategies for undersampling and iterative reconstruction of DTI 
data have been proposed [2]. Rather than first reconstructing the diffusion weighted images then fitting the tensors, in the current study diffusion 
tensor fields are directly estimated from k-space data via model-based reconstruction. The rationale is that better performance might be achieved by 
direct estimation and estimating fewer unknowns in the reconstruction. Model-based reconstruction algorithms have been proposed for DTI [3-4], but 
not for undersampled data. 
 
Methods: Model-based reconstruction of undersampled data is performed by fitting the diffusion tensor D directly to the acquired data via 
minimizing the L2-norm cost function in Eq. (1), where W is the undersampling matrix, F is the Fourier operator, I0 is the non-diffusion weighted 
reference image, b is the diffusion weighting factor, gn is the diffusion encoding directional vector, φn is the image phase and dn is the measured k-
space for the nth diffusion direction. Minimization is done by first computing the derivative δC(D)/δDij of Eq. (1) with respect to the ijth element of 
the tensor, then updating it using a step size λ according to the gradient descent algorithm in Eq. (2). The process is repeated until all parameters have 
converged, in which Eq. (1) has reached a minimum. 

C (D) = WFI0e−bg n
T ⋅D⋅g n eiφn − dnn =1

N∑
2

2
     (1)   Dij

n +1 = Dij
n − λ δC (D)

δDij
    (2) 

To test the performance of the proposed approach, fully-sampled Cartesian k-space DTI (95 encoding directions) was acquired on a fixed, excised 
macaque brain hemisphere using a Bruker 7T scanner.  A subset of images encoded in 12 directions was chosen, phase-corrected, and based to 
simulate undersampling using an accelerating factor R of 2 but different patterns, including variable density (MBVD), center only (MBC) and center 
offset (MBCO). Performances of sampling schemes and reconstruction were assessed by comparing the mean white matter fiber orientation deviation 
(Δα), root mean squared (RMS) error of the fractional anisotropy (FA) and mean diffusivity (MD) over the whole hemisphere to those obtained from 
12- and 6-image fully-sampled datasets, against the entire 95-image “gold standard”. 
 
Results and Discussion: Figure 1 demonstrates the FA maps and Table 1 lists the quantified performance metrics for the cases discussed. All 
reconstruction schemes converge within 1000 iterations, taking approximately 5 minutes on a machine with a Quad-Core processor and 4GB RAM. 
Overall, performances of the model-based reconstruction for estimating the white matter orientation and FA are generally comparable to the 12-image 
fully sampled case and are better than the 6-image case, which serves as the control based on equivalent acquisition time.  The performances for 
estimating the MD is less impressive, possibly because unlike the case of fiber orientation or the FA, estimation biases in the diffusivities do not self 
normalize.  For all DTI parameters, minor differences in the performance are observed among the model-based schemes.  Specifically, the MBCO 
case performs the best in terms of Δα and RMS FA, whereas MBVD has the best RMS MD.  These observations suggest that DTI scan time is better 
spent acquiring partial k-space of more directions than full resolution of fewer directions, and that different regions of k-space may contribute 
differently toward the accuracy in estimating different DTI parameters.  
 
Conclusion: The model-based algorithm is a promising reconstruction method for undersampled DTI data, capable of achieving comparable accuracy 
for estimating the DTI fiber orientation and FA but requiring only half of the acquisition time, in the case of phase-corrected data.  Phase correction 
doesn’t affect the results of MBC, but future work will be in estimating image phase for the other sampling schemes. Different regions of k-space 
appear to contribute to DTI accuracy unequally, which warrants further investigation. 
 
 

Figure 1. FA maps for (a) 95 directions “gold standard”, (b) 12-direction full
images, (c) 6-direction full images as control (d) model-based variable density
(MBVD), (e) model-based centric sampling (MBC), and (f) model-based
center with offset (MBCO). 

Table 1. Metrics of performance in terms of estimation error 
for DTI parameters compared against the 95-image “gold 
standard” dataset.  Angular deviation Δα and RMS MD are 
reported in degrees and 10-5 cm2/s, respectively.  RMS FA is 
dimensionless. 

Scheme Δα RMS FA RMS MD 
MBVD 8.66 0.0479 0.0057 
MBC 7.28 0.0403 0.0077 
MBCO 6.94 0.0361 0.0086 
6 full img 14.05 0.0790 0.0074 
12 full img 8.70 0.0445 0.0046 
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