
 
Figure 1. Minimum and maximum values for 
anisotropic diffusion correction factor k2 as a function 
of the ratio, λ3/λ1, of the smallest and largest diffusion 
tensor eigenvalues. For a given value of λ3/λ1, the k2 
values were optimized for all possible diffusion tensor 
orientations and values for the intermediate diffusion 
tensor eigenvalue, λ2. For isotropic diffusion, k2 = 1.
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Introduction: The underlying theory for the closely related MRI techniques of vessel size imaging (VSI) [1-3] and microvessel density imaging (MDI) [4-6] is based 
on the work of Kiselev and Posse [7-8]. This theory, however, treats water diffusion as being isotropic. As a consequence, applying the standard VSI and MDI formulae 
to white matter regions, where diffusion can be highly anisotropic, may result in significant errors for MRI estimates of the vessel size and microvessel density indices. 
Here we explicitly calculate corrections for the VSI and MDI formulae that incorporate the effects of diffusion anisotropy.  These may be particularly relevant for the 
application VSI and MDI to the assessment of angiogenesis in white matter tumors. 
Theory: A key parameter measured for VSI and MDI is the quantity Q ≡ ΔR2/(ΔR2*)2/3, where the relaxation rate shifts ΔR2 and ΔR2* are, respectively, the single 
spin echo and gradient echo transverse relaxation rate increases caused by a sufficiently high dose of an intravascular paramagnetic contrast agent [4-6]. For anisotropic 
diffusion, the fundamental connection between Q and the microvasculature is 
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where D is the mean diffusivity, N is the microvessel density, and  b = 1.6781. As described in Refs. 4-6, the parameter k1 depends on the distribution of microvessel 
radii according to  
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where the angle brackets indicate ensemble averages of the microvessel radius R raised to the indicated powers. The main new result of this work is the correction 
factor, k2, for diffusion anisotropy given by 
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where P1/3 indicates a Legendre function of the first kind,  
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In Eq. (4), Dx'x', Dy'y', and Dx'y' represent components of the diffusion tensor in a reference frame rotated by spherical angles of θ and φ relative to a (magnet) frame of 
reference for which the z-axis is parallel to main magnetic field. More explicitly, we have 
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with (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) being the components of the diffusion tensor in the magnet frame. 
Thus, given the magnet frame diffusion tensor, one can use Eq. (3) to calculate k2, typically by 
performing the integrals numerically. For isotropic diffusion, one may easily verify that k2 = 1, and 
Eq. (1) then reduces to the standard form [4-6]. The derivation of Eq. (3) employed the 
idealizations of randomly oriented, cylindrical microvessels and of no correlation between vessel 
orientation and vessel radius. The effect of diffusion anisotropy on Q arises only through the 
diffusion dependence of ΔR2, since within our model assumptions ΔR2* is insensitive to diffusion. 
Once Q has been determined, the vessel size and microvessel density indices are then found from  
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where f is the blood volume fraction, RU and RL represent upper and lower bounds on the mean 
vessel radius, and NU and NL represent upper and lower bounds on the microvessel density. These 
are generalizations of the formulae given in Ref. 6, with the effect of diffusion anisotropy included 
through the parameter k2. The parameter f (needed for RU and NU) and the parameter RL (needed for 
NU) are estimated independently of the measurement of Q (for example by dynamic contrast 
enhanced MRI for f and a priori histological knowledge for RL). It should be emphasized that, 
while RU, NL and NU formally represent upper or lower bounds, in practice they may often provide 
plausible estimates for the mean vessel radius and the mean microvessel density [1-6].  
Results: In order to investigate the range of allowed departures from unity of the anisotropic 
diffusion correction factor k2, we used Eq. (3) to find the minimum and maximum k2 values for 
fixed ratios of the smallest diffusion tensor eigenvalue (λ3) to the largest eigenvalue (λ1). These 
were optimized for all possible values of the intermediate eigenvalue ratio (λ2/λ1) and for all 
possible orientations of the diffusion tensor relative to the magnet frame. Only the eigenvalue ratios are specified, as k2 is unaffected by an overall rescaling of the 
diffusion tensor. Figure 1 shows the minimum and maximum k2 values for eigenvalue ratios varying from 0.1 to 1.0, which covers the range of physical interest for 
white matter [9]. The global maximum of k2 is 1.007, which occurs for λ3/λ1 = λ2/λ1 = 0.445, and is less than 1% above the value for isotropic diffusion. For the range of 
eigenvalue ratios considered, the minimum k2 was found to be 0.906 for λ3/λ1 = λ2/λ1 = 0.1. By combining these results with Eq. (6), we then find that neglecting 
diffusion anisotropy can lead, for RU, NL and NU, to underestimates of up to 14%, 2%, and 1%, respectively, and to overestimates of up to 1%, 34%, and 10%. 
Discussion: Diffusion anisotropy can significantly affect parameter estimates for VSI and MDI. If the diffusion tensor is known, then corrections to the standard VSI 
and MDI expressions can be calculated directly from Eqs. (3) and (6). Therefore the use of diffusion tensor imaging in conjunction with VSI and MDI is recommended 
when studying white matter regions. However in most cases, the errors caused by neglecting diffusion anisotropy will be small to moderate and the uncorrected 
formulae may still yield fair approximations. 
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