
A Bayesian random effects model for enhancing resolution in diffusion MRI 
 

M. D. King1, D. C. Alexander2, D. G. Gadian1, and C. A. Clark1 
1Institute of Child Health, University College London, London, United Kingdom, 2Computer Science, University College London, London, United Kingdom 

 
Introduction 
One of the major limitations of diffusion MRI (dMRI) is poor resolution relative to the structure under investigation. Typical dMRI maps 
do not provide spatial information with the same detail seen in high resolution structural MRI and this can limit their clinical value. A 
number of methods have been developed for dealing with voxels that contain multiple fibers [1], but none of these provide a spatial 
resolution of the components. The present work outlines a Bayesian latent variables random effects modelling approach to achieving a 
subvoxel spatial separation of the underlying structures. 
Methods 
Diffusion-weighted data were acquired from 3 healthy volunteers on a 1.5 T Siemens Avanto system. A twice-refocused eddy-current-
nulled EPI sequence was used with diffusion-weighting gradients applied along 20 noncollinear directions with a b-value of 1000smm-2. 
50 contiguous slices were imaged by averaging two acquisitions. The imaging parameters were: echo time, 89ms; repetition time,  7s; 
slice thickness, 2.5mm; FOV, 240 by 240mm; matrix size, 96 by 96. Data processing was restricted to regions-of-interest, each of which 
consisted of a 5-by-5 array of voxels centred at the junction between the cingulum and corpus callosum. Details of the Bayesian 
statistical model are given in a previous publication [2]. The likelihood was based on the diffusion model proposed by Behrens et al. [3]. 
The main feature of the statistical model is a Markov random field treatment in which spatial prior distributions were assigned to the 
spherical coordinates and B0 signal intensity. Intrinsic Gaussian conditional autoregressive (CAR) distributions [4] were adopted. These 
take the formU U i j N u w mi j i u i| , , ~ ( , / )≠ 2 , that is, a normal distribution with mean ( iu ) given by the average of the neighbouring voxel values, 

and variance
iu mw /2 , where i and j are voxel labels, 2

uw  is a scaling parameter and mi is the number of voxels adjacent to the ith voxel. A 
gamma distribution was assigned to the inverse of the normal variance. The set of neighbours included all those voxels with one or 
more corners in common with the ith voxel. The remaining parameters were assigned exchangeable prior distributions. Posterior 
distributions were sampled using Markov chain Monte Carlo (MCMC) implemented in WinBUGS/GeoBUGS [5] together with the 
WinBUGS development interface [6].  

Results  
The figure shows the results obtained for one of the three subjects in the 
region of the junction between the cingulum and corpus callosum. Similar 
results were obtained in the other subjects. The lower half of the figure shows 
an array of vector cluster plots, as obtained when the signal intensity data 
were modelled at the resolution provided by the native dMRI data. The upper 
half of the figure shows the corresponding results generated by modelling the 
signal intensity data in each voxel as a mixture of signals from 3 vertically 
resolved sub-voxels. The analysis was performed on a native 5-by-5 ROI, a 
3-by-5 portion of which is shown in the figure. At the native resolution the 
boundary between the cingulum and corpus callosum gives rise to a row of 
crossing fibres. A largely successful separation of the two structures has been 
achieved by using the latent variables random effects model. In particular, the 
row of voxels at the junction between the two structures is partitioned into a 
single row of subvoxels assigned to the corpus callosum and two rows 
assigned to the cingulum. The resulting pattern of subvoxel fibre orientations 
is entirely consistent with the underlying white matter structure at the junction 
between the cingulum and corpus callosum. 
Discussion  
Spatial resolution is a limiting factor in diffusion tractography and other dMRI 
applications. The concept that an increase in resolution can be achieved 
through post-acquisition data processing has been investigated previously [7-

9], motivated by the need for methods that can deal with bending, fanning and partial volume problems that occur due to poor spatial 
resolution. The results presented here show that the Bayesian random effects model provides a plausible separation of components at 
the subvoxel level, despite the relatively low information content of the 20-directions dMRI data and moderate b-value (1000 s mm-2) 
used in this study. In particular, the model has the potential to offer a solution to the crossing fibre problem that arises due to partial 
volume effects.  
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