

A 32-Channel Parallel Exciter/Amplifier Transmit System for 7T Imaging

L. Poulo¹, R. Haefner¹, B. Stoeckel², C. M. Deniz³, L. Alon³, D. K. Sodickson³, and Y. Zhu³

¹Analogic Corporation, Peabody, MA, United States, ²Siemens Medical Solutions USA Inc, New York, NY, United States, ³Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States

Introduction:

Parallel transmission (Tx) generalizes conventional Tx and RF shimming, offering extra degrees of freedom and significant opportunities for optimizing Tx performance, improving pulse design trade-off, and leveraging new coil concepts. The present work of developing a 32 Tx-channel system reflects an interest in 1) exploring the opportunities thoroughly and acquiring insights to the question of “what is the optimal number of channels?” and 2) developing state-of-the-art RF sequencer and power amplifier instrumentation. There were significant efforts in recent years prototyping high transmit channel-count research platforms [1,2]. In the following, we describe the RF sequencer and RF power amplifier development efforts and present initial bench testing results.

Methods and Results:

The present approach to a multi-channel, parallel RF sequencer/amplifier (RFSA) design implements a fully contained, stand-alone subsystem which can be preprogrammed with all real-time envelope waveforms and pulse sequences for a given study. This subsystem replaces the existing RF transmit system, so that there are no old/new waveform compatibility issues. The 32-channel system is implemented physically in 8-channel sections. A diagram of the system architecture is shown in Figure 1. Each of the four water-cooled sections in this system includes eight RF power amplifiers and an 8-channel RF sequencer, controlled by an embedded single board computer (SBC). The run time interface requires only three existing real time signals: 1) RF unblank for a safety interlock mechanism; 2) shot trigger for pulse timing; and 3) reference clock for precise frequency synchronization. Software communication is maintained between the host computer and the 32-channel subsystem at all times; with one function being to link all safety interlocks between the existing system and the new RF subsystem. The architecture allows for straightforward configuration of systems with more or fewer channels.

Within each of the 8-channel sections, FPGA's control the real time clock system, envelope scaling, and interpolation, while the latest generation of high-speed, low-cost RF synthesizer IC's implement essentially all subsequent RF frequency synthesis: DDS carrier generation, modulation, interpolation, and high speed D/A conversion. With internal clocks up to 1 GHz, these devices generate the 7T, 298 MHZ RF signals directly, without any need for analog mixing and local oscillators.

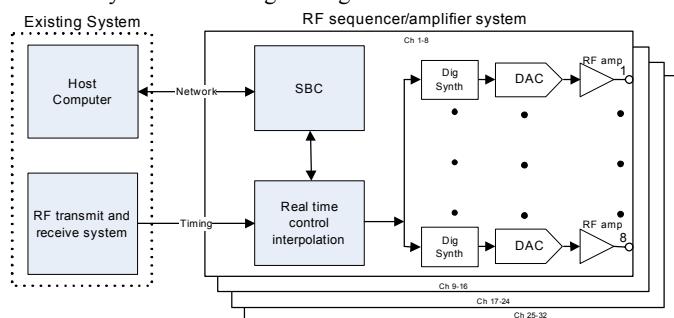


Figure 1

Figure 2

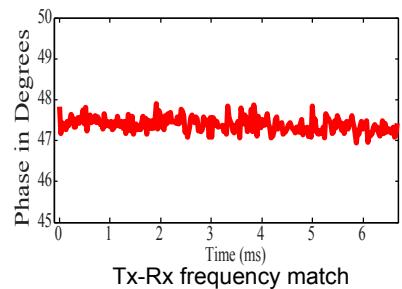


Figure 3

Figure 2 shows an assembled RF power amplifier plug-in module for one of the channels. Each of these is a 2 kW peak envelope power unit. These have built-in circulators in each channel for load isolation, and forward and reflected power monitors for each channel.

The waveform generation part of this RF subsystem supports an arbitrary number of variable length, real time, complex envelopes within the 4 megapixel (complex) total envelope memory per channel. Envelopes are defined using the same (integer) 1-10 us sampling on the existing system. Amplitude/phase scaling factors may be defined independent of temporal envelope definitions for each channel.

Complex envelopes are stored with 16/16-bit resolution, and 18-bit resolution is kept after interpolation for RF modulation. Initial phase may be set with 16-bit resolution. A fine frequency mechanism is implemented with the FPGA and RF synthesizer to provide approximately 4 microHz resolution. This feature allows the RFSA to match any receiver frequency, regardless of frequency plan. This capability enables a phase match with a maximum phase slip rate of 2 degrees/hour under free running conditions. This enables imaging operation without any(optional) initial phase resets. While arbitrary frequency resolution or small offset may also be built into the complex RF envelope, the present scheme allow the pulse center frequency to be independent of the RF envelope, resulting in simpler software and smaller memory requirements.

Figure 3 shows the initial phase match between the new exciter and existing receiver during one shot, measured using an early single channel breadboard of the synthesizer section and a manual calibration. The full frequency resolution will be implemented in the final hardware, with automatic frequency/phase matching to the previously mentioned resolution.

Discussion/Conclusion:

Initial tests have demonstrated the feasibility of an add-on exciter section without the need to replicate the receiver architecture. This is a research platform that can be integrated with various MR scanner models. It is also a prototype demonstrating the possibility of a new generation of spectrometers that take advantage of modern digital/RF technology from the telecommunication industry. The next steps will be the integration of this RF subsystem with new multi-channel coils for imaging tests.

References:[1] Zhu, Y. et al. ISMRM 2009: 3020 [2] Hollingworth, N. A. et al. ISMRM 2009:3019