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Introduction: Concurrent TMS/MRI is a promising tool for neuroscience because it allows simultaneous stimulation and 
measurement of human brain activity with high spatial resolution [2]. 
However the concurrent application of TMS and MRI is technically challenging because of the sensitivity of MRI (particularly 
FMRI) to inhomogeneities in the magnetic field of an MR-scanner. One particular problem are the artefacts caused by the non-
zero magnetic susceptibility of a TMS-coil, which is positioned very close to the head of a participant [1]. The image distortion 
and signal dropout occurs primarily directly under the TMS coil – often the area of most interest for a TMS/MRI experiment.  
This abstract demonstrates that it is possible to use thin ferromagnetic shims to reduce these inhomogeneities and to significantly 
reduce the signal dropout in EPI. 
Setup: Experiments were carried out with a GE 3T HDx. An MR-compatible 70mm figure-of-8 TMS-coil from the Magstim 
Company was used. The passive shim consisted of austenitic stainless steel foil (type 302) with a thickness of 0.025 mm. This foil 
was cut into 3x10 mm2 pieces, which were distributed over the back of the TMS-coil as shown in Figure 1. 
Methods: The inhomogeneity introduced by the TMS coil was passively shimmed by iteratively minimizing the peak-to-peak B0 
field variation measured by B0field maps. 
Field maps: The TMS coil was positioned flat, either superior or anterior to a plain flat side of a 40x20x20 cm3 cubic gel 
phantom. Field maps were calculated from the phase information of two 3D FSPGR images (FOV 350x262x135 mm3, Resolution 
2.7mm3, TR=20ms, TE 2ms and 3ms). The active shimming was manually turned off. Phase images at each TE were calculated 
and unwrapped before subtraction using Prelude [4] and converted into units of μT. The field map of 
the baseline scan was subtracted from the field maps with the TMS-coil in place and were analysed 
using Matlab. 
EPI: Axial EP-images (FOV 217x217x217 mm3, Res (3.4 mm)3, 40 slices, TR 3000 ms, TE 35ms, 
Phase-Encode: AP, 5 volumes, automatic shimming) were acquired on a spherical gel phantom 
(200mm diameter) with the TMS-coil positioned to the superior-right (radiological) of the phantom. In 
vivo EPI data were acquired with the TMS-coil on the superior-right side of the head of one participant 
(approximately over the sensorimotor cortex).  
All data were acquired with three different configurations: 1st TMS with shim attached to the back of 
the coil, 2nd the shim was removed, 3rd the TMS-coil was taken away to acquire a baseline scan. The 
in-vivo images were co-registered using FSL Flirt, 6 degrees of freedom, to the image without the 
TMS-coil to correct for movement between the scans. 
Results: The results from the field maps are shown in Figure 2. These figures show consistently that 
the B0field inhomogeneity is reduced by between 50% and 70% by the passive shim. There are no 
regions in the FOV where the shim increased the field offset. The EP-images of the phantom are 
shown in Figure 3. The spatial perturbations and the signal drop-out under the TMS-coil are reduced. 
Figure 4 shows the EP-images from a human head. The artefacts are less expressed than in a phantom. 
The shim eliminates most of the susceptibility related artefacts. 
Conclusions: This work demonstrates that passive shimming significantly reduces the 
inhomogeneities in B0 caused by the TMS coil resulting in a substantial reduction in the artefacts in the 
EP images. The diamagnetic effects of the TMS-coil are still stronger the ferromagnetic effects of the 
shim, which suggests that a full optimisation can lead to further improvement in the field homogeneity.  
The shim is thin and easy to use and therefore a versatile solution to reduce the artefacts related to the 
susceptibility in concurrent TMS/fMRI. 
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Figure 1: TMS-coil with shim. The 
steel for the shim was distributed as 
follows: Evenly along two rings 
around each side of the TMS-coil 
with a mean diameter of 70mm and a 
width of 10mm (each ring: 1080 mm2 
foil or 0.21 g steel), on the entrance 
point of the lead about 0.14 g of steel 
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 c) No shim, coronal  d) With shim, coronal 

e) Field in distance to coil (axial) f) Field in distance to coil 
(coronal) 

 
Figure 2:Field offsets (in μT) relative to baseline caused by the TMS-coil. 
The maps show a plane about 1cm away from the coil surface. a,b) Axial 
slices with the positioned superior to the phantom, in an axial orientation. 
c,d) Coronal  slice (Superior=top), coil coronal. e,f) Plots along lines 
perpendicular to the coil surface through a central line where the two 
halves of the coil join.  
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Figure 3: Axial slices of EP-images of a spherical phantom with the TMS-coil 
adjacent on the superior left side. Left: no TMS coil, centre: coil without shim, 
right: coil with shim. The spatial perturbations and a decreases in signal  are 
significantly less pronounced in the image with the shim. 
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Figure 4: Sagittal and axial views of EPI of a human brain. The TMS-coil was 
positioned to the superior left. Left: without the TMS-coil, middle TMS-coil, no 
shim, right: coil with shim. The white arrows indicate the deformations in the 
images view. The deformations due to the TMS-coil are reduced using the 
shim. 
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