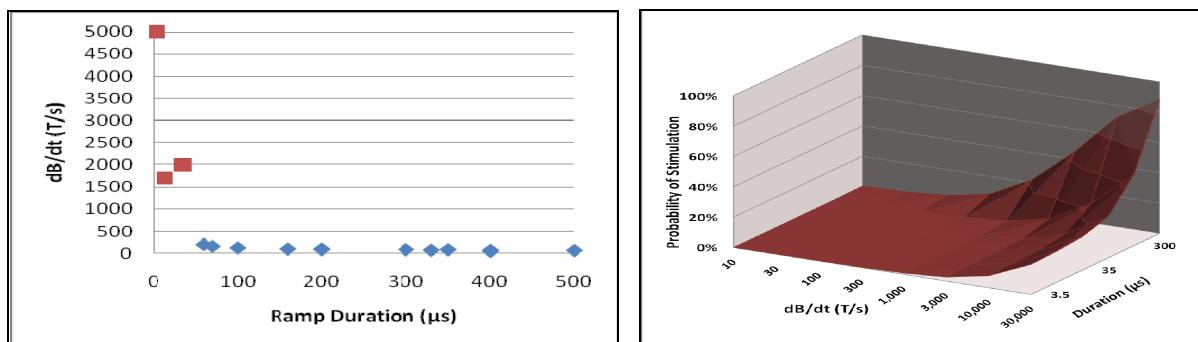


Threshold for Peripheral Nerve Stimulation with Ultra-Fast Gradients

I. N. Weinberg¹, P. Stepanov², S. C. Glidden³, H. D. Sanders⁴, D. Warnow⁴, A. B. McMillan⁵, R. P. Gullapalli⁶, P. M. Starewicz⁷, K-M. Lo⁸, A. Fisher⁹, J. P. Reilly¹⁰, M. S. Nizioł¹¹, and S. T. Fricke¹²

¹Weinberg Medical Physics LLC, Bethesda, Maryland, United States, ²Weinberg Medical Physics LLC, ³Applied Pulsed Power Inc., Freeville, New York, United States, ⁴Applied Pulsed Power Inc., ⁵Radiology, University of Maryland, Baltimore, Maryland, ⁶Radiology, University of Maryland, Baltimore, ⁷Resonance Research, Inc., Billerica, Massachusetts, ⁸University of Maryland, ⁹Physics, Technion-Israel Institute of Technology, Haifa, Israel, ¹⁰Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, ¹¹Family Practice Associates, Dryden, New York, ¹²Radiology, Children's National Medical Center, Washington, DC

Introduction


In clinical MRI scanners, dB/dt is limited to typically below 50 T/s (for a ramp duration of 0.2 ms), due to unpleasant peripheral nerve stimulation ("PNS") caused by electric fields induced in the body [1]. Prior clinical trials involving magnetic gradients, with rise- and fall-times as short as 50 μ s (with dB/dt rates as high as 400 T/s [2]), and slew rates as high as 400 T/m/s [3], have suggested that the dB/dt threshold for stimulation PNS asymptotically increases with shorter transition times. These predictions have not hitherto been examined experimentally for rise-times below 50 μ s. We therefore conducted an experimental study of PNS with magnetic gradients in this ultra-fast regime (i.e., rise-times of just a few microseconds).

Methods

The right hands of twenty-six volunteers (with age ranges from 18 to 67) were exposed to series of bipolar and unipolar magnetic gradient pulses with ramp times as short as 3.5 μ s and a maximum dB/dt of 13,000 T/s. The pulse trains were created using proprietary pulse-power technologies (adapted from plasma physics experiments [3]) with a coil of inductance 110 μ H, to which a maximum voltage of 8200 V was applied. Sham pulses (i.e., $dB/dt = 0$) were employed to discriminate against placebo effects. Data were analyzed using a logistic regression model relating probability of PNS to the age, sex, dB/dt , polarity (unipolar and bipolar) and transition-times.

Results and Discussion

Our study shows that in addition to the expected dependencies (on ramp time and gradient strength) the likelihood of nerve stimulation significantly depended on age ($P<0.005$) and to a lesser extent on polarity ($P<0.13$). At ramp times of 3.5 μ s, our model (see Figure) predicted that 5% of the general population will exhibit PNS at dB/dt levels above 6,000 T/s for unipolar pulses, and at 3,000 T/s for bipolar pulses. Similarly at 3.5 μ s 50% of the general population (with an average age of 40) will exhibit PNS at dB/dt levels of 128,000 T/s for unipolar pulses, and 68,000 T/s for bipolar pulses. These threshold levels are significantly higher than would be extrapolated from prior studies that were conducted with longer transition times [1]. The model predicts that at the "5% likelihood-for-stimulation-threshold" for subjects younger than 21-years-of-age is three times lower than the same threshold for subjects older than 50-years-of-age. Gradient pulses in this study were applied within 10-cm, thus maximum applied slew rate was on the order of 130,000-T/m/s.

Left: data collected from this study for 5% probability of PNS (in red) compared to prior published results for PNS thresholds (in blue) abstracted from Schaefer *et al* [5], based on prior publications [6-8]. Right: modeled probability for PNS (unipolar pulses, avg. age 40.)

Conclusion

Experimental studies of PNS demonstrate that at ultra-short rise- and fall-times, very high slew rates (i.e., 130,000 T/m/s) can be applied without causing peripheral nerve stimulation. Younger subjects have lower dB/dt stimulation thresholds than older patients.

Acknowledgments: Supported by NHLBI Grant R2HL086294.

References

1. FM Vogt, ME Ladd, P Hunold, S Matelescu, FX Hebrank, A Zhang, JF Debatin, SC Gohde. Increased Time Rate of Change of Gradient Fields: Effect on Peripheral Nerve Stimulation at Clinical MR Imaging. *Radiology* 233:548-554 (2004).
2. JD Bourland, JA Nyenhuis, DJ Schaefer. Physiologic Effects of Intense MR Imaging Gradient Fields. *Neuroimaging Clin NA*. 9(2):363-377(1999).
3. RE Feldman, CJ Hardy, B Aksel, J Schenck, BA Chronik. Experimental Determination of Human Peripheral Nerve Stimulation Thresholds in a 3-Axis Planar Gradient System. *MRM* 62:763-770 (2009).
4. H Sanders and S Glidden. High Power Solid State Switch Module. *Int. Power Modulator Symposium Conf. Record* 563-566 (2004).
5. DJ Schaefer, JD Bourland, JA Nyenhuis. Review of Patient Safety in Time-Varying Gradient Fields. *JMRI* 12:20-29 (2000).
6. TF Budinger, H Fischer, D Hentschel, HE Reinfelder, F Schmitt. Physiological effects of fast oscillating magnetic field gradients. *JCAT* 15:609-614 (1991).
7. MS Cohen, R Weisskoff, H Kantor. Sensory stimulation by time varying magnetic fields. *Magn Reson* 14:409-414 (1990).
8. CLG Ham, JML Engels, GT van de Weil, A Machielson. Peripheral nerve stimulation during MRI; effects of high gradient amplitudes and switching rates. *J Magn Reson Imaging* 7:933-937 (1997).