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Introduction: 
Hypoxic regions in tumors are known to affect radiation sensitivity and promote 
development of metastases [1]. Noninvasive imaging based methods such as 
MRI are particularly suitable for longitudinal measurements and generation of 
three-dimensional spatial maps of tumor hypoxia [2]. An MRI method that could 
differentiate hypoxic versus normoxic tissues without relying on washout 
modeling would be clinically useful. Previous research demonstrated that 2-
nitroimidazole accumulated in hypoxic tissues due to an enzyme mediated 
reduction of the nitro group under hypoxic conditions [3]. In this work, we report 
both in vitro and in vivo evidence for accumulation of a T1 shortening agent, a 
GdDOTA monoamide conjugate of 2-nitroimidazole abbreviated as GdDO3NI 
(Fig 1b), in hypoxic tumor tissue.  
Materials and Methods:   
MR experiments were performed on a Varian 4.7T MR scanner. In vitro 
measurement of T1 relaxivity (r1) of GdDO3ABA (control agent, Fig 1a) and 
GdDO3NI (hypoxia targeting agent, Fig 1b) was performed at 37°C in a tissue - 
simulating 1% agarose phantom. For the r1 measurements, a spin-echo 
sequence was used with several TR values (0.1-6s). Relaxivity was extracted as 
slope of linear fit to relaxation rates (R1) vs. concentration. In vivo imaging studies were performed on 10 Copenhagen rats bearing 
subcutaneous syngeneic R3327 - AT1 prostate tumors (volume ~3cc), since they are known to have hypoxic regions in the core [4]. 
Following baseline T1 mapping (TR: 0.1-6 s and TE: 12 ms), T1-weighted images (TR/TE = 200/10 ms, FOV = 5 cm X 5 cm, matrix = 
128 X 128, slice thk = 1 mm) were obtained pre and post injection of 0.1 mmole/kg body wt contrast agent (GdDO3ABA or GdDO3NI, n 
= 5 each) for 150 min. Data analysis was performed by segmenting the voxels in the tumor region into periphery and center, based on a 
criterion of 50% enhancement at 90 s post injection. Gd concentration in the tumor slices was calculated using the relation [CA] = 
(R1,post – R1,pre) / r1. For validation, ex vivo inductively coupled plasma mass spectroscopy (ICP-MS) analysis was performed to quantify 
the Gd concentration in the periphery and core regions of tumors (n=3). 

 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

Results and Discussion:  
A linear fit to the relaxation rates (R1) vs. concentration data yielded relaxivity values of 4.76 ± 0.27 mM-1s-1 and 5.45 ± 0.294 mM-1s-1 for 
GdDO3ABA and GdDO3NI, respectively. Contrast agent kinetics were compared following intravenous injections of GdDO3NI and 
GdDO3ABA in AT1 rat prostate tumor bearing animals. The time course signal intensities (qualitative) and the calculated Gd 
concentrations (quantitative) showed a clear difference in the enhancement patterns (Fig 2 a & b) for the two (GdDO3ABA and 
GdDO3NI) and between well perfused and poorly perfused regions. A statistically significant difference in contrast enhancement / 
concentration was observed in poorly perfused (and potentially hypoxic) regions at late time points (85-150 min) between GdDO3ABA 
and GdDO3NI injected animals (Fig 2d). Gd concentrations obtained from ICP-MS analysis of tumor samples correlate well with the 
concentration profiles observed. Thus, GdDO3NI shows promise as a hypoxia targeting small molecular contrast agent. 
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Figure 2: Gd concentration maps of 
multiple slices of representative 
tumors in animals injected with a) 
GdDO3ABA and b) GdDO3NI. The 
image panels show gadolinium 
concentration at 150 minutes post 
injection.  
Kinetics of mean Gd concentration 
(n=5) c) for well perfused (peripheral) 
region & thighs and d) for poorly 
perfused (central) regions of AT1 
tumors in animals injected with 
GdDO3ABA and GdDO3NI. Region 
enclosed within (   ) represents p<0.05 
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Figure 1: Structure of a) GdDO3ABA (control) 
and b) GdDO3NI (hypoxia targeted). 
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