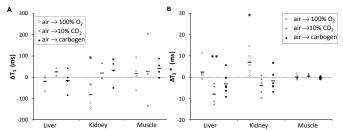
T1 and T2* responses to hypercapnic and hyperoxic gases in normal tissue are independent of the order of gas delivery

J. D. Winter^{1,2}, M. Estrada¹, and H-L. M. Cheng^{1,3}

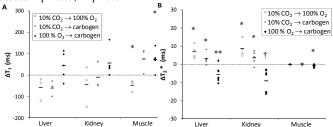
Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada, ²Research and Development, IMRIS, Winnipeg, Manitoba, Canada, Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

Introduction: Quantitative MRI measures of T₁ and T₂* relaxation times offer a noninvasive means to indirectly monitor tissue O₂ content. T₁ oxygen-dependence is primarily based on the presence of weakly paramagnetic molecular O₂ dissolved in blood plasma and interstitial space; whereas, T₂* oxygen dependence is based on the signal loss induced by local magnetic field inhomogeneities generated by paramagnetic deoxy-hemoglobin. The clinical rationale for gas challenge studies originate from radiotherapy strategies aimed at augmenting tissue oxygenation via increased fraction of inspired O₂ (FiO₂) and/or CO₂ (FiCO₂). Inclusion of CO₂ in the inhaled O₂ gas mixture was proposed to reduce O₂-induced blood flow reductions, and previous studies have demonstrated differential T₁ and T₂* responses to breathing carbogen and 100% $\hat{O}_2^{1,2}$. However, in these studies the underlying tissue oxygenation and perfusion status were not investigated, and gases were delivered in a fixed order. The objective for the current study was to characterize T₁ and T₂* responses to various combinations of FiO₂ and FiCO₂ in rabbit abdominal tissues. Potential blood flow and partial pressure of O2 (pO2) dependence on previous gas challenges were examined by randomizing the gas challenge order in each subject. Following the imaging sessions, pilot measurements of tissue pO₂ and perfusion were conducted to assess temporal dynamics that may contribute to MR relaxation time changes. Methods: All animal studies were approved by our institutional animal care committee. Quantitative T₁ and T₂* MRI parameters were collected from five New Zealand white rabbits (4.0 - 4.5 kg) in six imaging sessions with various combinations of FiO₂ and FiCO₂. Each rabbit was induced with 5 % isoflurane, and maintained at 1 % for the MR experiments and 2 % for the invasive studies. The following gas challenges were delivered in random in 5 - 8 different steps: room air (21% O2, balanced N₂), 10% CO₂ (balanced air), 100% O₂, and carbogen (10% CO₂ and 90% O₂). MR imaging was performed on 1.5 T GE scanner (Signa EXCITE TwinSpeed; General Electric Healthcare, Milwaukee, WI, USA) using a transmit/receive quadrature knee coil, with coronal images slices positioned to encompass the kidney, liver, and paraspinal muscle. T1 quantification was achieved using a variable flip angle approach, with a series of 3D fast spoiled gradient recalled echo scans with the following imaging parameters: TR = 7.2 ms, TE = 3.1 ms, FA = 2, 10 and 21°, FOV = 160 mm, matrix = 256×160 , slice thickness (SL_{TH}) = 3 mm, number of slices (N_{SL}) = 10, $N_{AVG} = 4$. T_2 * quantification was achieved using a 2D multi-echo gradient-echo sequence with the following parameters: TR = 100 ms, 16 equally spaced TES = [2.1 - 1.0]47.1] ms, FA = 30°, FOV = 160 mm, matrix = 256 × 192, SL_{TH} = 3 mm, N_{SL} = 6, and N_{AVG} = 4. Pixel-wise T₁ and T₂* maps were generated using in-house Matlab (V.7.0, Mathworks Inc., Natick, MA, USA) scripts. T₁ parameter maps were generated using the signal equation for the SPGR steady state magnetization with analytical-based flip angle correction using B_1 field maps acquired separately³. T_2 * parameter maps were computed by fitting T_2 * signal intensity versus echo time to a monoexponential signal decay function⁴. Regions-of-interest were outlined in the liver, kidney and muscle to extract mean T₁ and T₂* values for each gas challenge.

Invasive tissue measurements were conducted in a separate session with OxyLite and OxyFlo (Oxford Optronics, Oxford, UK) fibre optic probes that were inserted into the three tissue types (liver, kidney, and muscle). The OxyLite uses fluorescence lifetime measurements to quantify absolute tissue pO2 and OxyFlo uses laser Doppler to provide relative measures of tissue perfusion.


Relative ΔT_1 and ΔT_2 * values were computed for each transition between the different gas challenges, and a series of one-tailed one-sample t-tests were performed to determine significant differences from zero (null hypothesis).

Results: Figure 1 provides the ΔT_1 and ΔT_2^* values for each of the transitions from air to one of the three inspired gas challenges. All transitions exhibited expected trends, especially in liver and kidney. Key observations include trends toward positive ΔT_2^* for air $\rightarrow 100\%$ O₂, negative ΔT_2^* on air $\rightarrow 10\%$ CO₂, and equivocal ΔT_2^* on air \rightarrow carbogen. Significance for ΔT_2 * transitions existed for air \rightarrow 10% CO₂ in liver (p < 0.01) and air $\rightarrow 100\%$ O₂ in kidney (p < 0.05). Muscle ΔT_2^* were very small and insignificant, and air \rightarrow carbogen transitions produced inconsistent ΔT_2^* in all tissues. ΔT_1 values exhibited variability, with only kidney air $\rightarrow 100\% O_2$ (p <0.05) transition exhibiting significance. Figure 2 provides ΔT_1 and ΔT_2 * for transitions between the three different gas challenges. Expected trends were also observed: positive ΔT_2^* and negative ΔT_1 on 10% $CO_2 \rightarrow$ 100% O_2 /carbogen, and reverse changes for 100% $O_2 \rightarrow$ carbogen. ΔT₂* significance was achieved in both liver and kidney on all transitions: 10% $CO_2 \rightarrow$ 100% O_2 /carbogen (p <0.05) and 100% $O_2 \rightarrow$ carbogen (p <0.01). For muscle, only the negative ΔT_2^* for 100% $O_2 \rightarrow$ carbogen (p < 0.05) was significant. ΔT_1 did not reach statistical significance for any gas transitions, except muscle transitions from 10% $CO_2 \rightarrow 100\% O_2$ and 100% $O_2 \rightarrow carbogen (p < 0.05)$.


Figure 3 provides a representative OxyFlo tissue pO2 and OxyLite perfusion time series in the liver. The invasive measurements demonstrated consistent trends in tissue perfusion and oxygenation changes but considerable variability in their absolute values and temporal dynamics.

Discussion: Although the principle clinical application for MR-based oxygenation monitoring is in oncology, there is still much to learn from normal tissue changes. In this study, we found that T_2^* changes followed predicted patterns: $\uparrow T_2^*$ on 100% O_2 (due to higher pO₂) and \downarrow T₂* on 10% CO₂ (due to higher Hb and blood volume). Similarly, T_1 changes followed predicted trends toward a $\downarrow T_1$ on 100% O_2 (due to higher pO₂ and lower blood volume) and ↑T₁ on 10% CO₂ (due to greater blood volume). However, T₁ changes were much less predictable, compared with T₂*. The air \rightarrow carbogen transition generated the most variable T_1 and T_2 * transitions, possibly attributed to opposing influences from observed perfusion and pO2 changes. A

previous study in normal human abdominal tissues found results which are inconsistent with the T_1 and T_2 * transitions in our study¹. This cited study reported T_1 decreases and non-significant T_2 * changes for air $\rightarrow 100\%$ O₂ and T_1 increases and T_2^* decreases for air \rightarrow carbogen¹. This distinction suggests physiological differences between the two studies may exist. For the invasive measures, we found large variability in the temporal dynamics of tissue perfusion and pO₂, which is a consideration for future studies. In conclusion, we found that T₂* provided greater sensitivity to changes in tissue pO2 and perfusion compared with T1, and we also found independence of relaxation time changes from order of gas administration. Variability in our study and the literature may be partly attributed to organ-specific pO2 and perfusion dynamics exhibited in this study.

Figure 1. ΔT_1 (a) and ΔT_2^* (b) values for each gas transition from air in three tissues. * p < 0.05, ** p < 0.01

Figure 2. ΔT_1 (a) and ΔT_2^* (b) values for transitions between gas

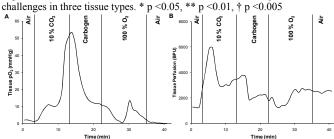


Figure 3. Representative OxyLite pO2 values (a) and OxyFlo relative perfusion measurements (b) in the rabbit liver.

References: 1. O'Connor JP et al., Magn Reson Med 2009,61:75-83; 2. O'Connor JP et al. Magn Reson Med 2007,58:490-496; 3. Cheng HL et al., Magn Reson Med 2006,55:566-574; 4. Beaumont M, et al., J Magn Reson Imaging 2009,30:313-320.