

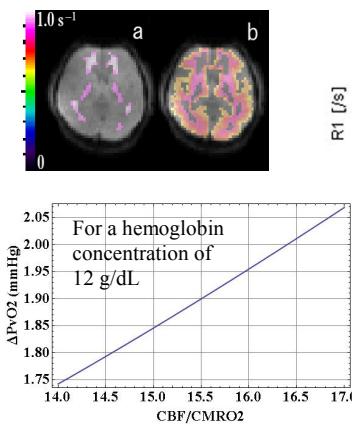
QUANTITATION OF CHANGES IN CEREBRAL BLOOD FLOW AND LONGITUDINAL RELAXATION RATE ($R_1 = 1/T_1$) INDUCED BY MILD HYPEROXIA

H. Tamura¹, T. Nagasaka², K. Shimada², J. Nishikata¹, M. Shidahara¹, S. Mugikura³, and Y. Machida⁴

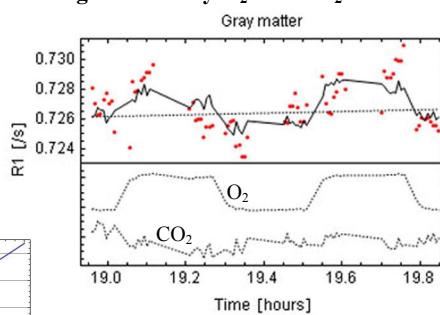
¹Department of Medical Physics, Tohoku University, Graduate School of Medicine, Sendai, Miyagi, Japan, ²Department of Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan, ³Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan, ⁴Department of Medical Imaging and Applied Radiology, Tohoku University, Graduate School of Medicine, Sendai, Miyagi, Japan

Introduction: Adequate oxygenation and cerebral blood flow (CBF) are crucial to brain metabolism (herein, cerebral metabolic rate of oxygen will be denoted as CMRO₂). Increases in tissue oxygenation and decreases in CBF with breathing 100% oxygen (O₂) have been observed by using T_1 relaxometry [1] and arterial-spin-labeling (ASL) methods [2, 3]. Quantitation of those changes induced by hyperoxia is expected to help understand pathophysiology of living tissue. However, those changes are affected by arterial partial pressure of carbon dioxide (PaCO₂) as well as that of oxygen (PaO₂). To our knowledge, there has been no quantitative data of those effects of PaO₂ where the effects of PaCO₂ are excluded. Our intention was to extract those effects of PaO₂ noninvasively and to examine if the changes in R_1 , as a probe of tissue oxygenation, relate to the changes in CBF.

Methods: Data acquisition- Seven healthy volunteers (age, 22-24) were scanned on a 3T Siemens Trio a Tim system with a 12-channel head receive coil. A pair of epochs of normoxia and hyperoxia was repeated three times (6 epochs in total). During hyperoxia, nearly 50% O₂, generated by mixture of room air and medical 100% O₂, was supplied with a facemask for routine clinical use. A nasal cannula was used to monitor partial pressures of end-tidal O₂ and CO₂, which were regarded as PaO₂ and PaCO₂, respectively. A series of 12 images for R_1 mapping (series R) and a series of 90 images for CBF mapping (series F) were obtained in the following order: the first epoch, F-R; each of the 2nd to 4th epoch, R-F-R; the 5th epoch, R-F; the last epoch, F. To eliminate inflow effect on T_1 , the series R was acquired with a non-selective-IR prepared turbo-FLAH sequence at 20 second intervals. A transaxial section of 2-cm thickness through the thalamus was imaged with a field of view, 25 cm; a flip angle, 8°; TR/TE, 3.3/1.41 ms; phase encoding steps, 128. The IR preparation was altered repeatedly in the same serial order: no inversion pulse, TIs of 200, 400, and 1500 ms. A set of the 4 successive images can produce an R_1 map, so that the mapping rate is about 20 s. CBF maps were obtained with Q2TIPS sequence [4] with a slice thickness, 1 cm; TR/TE, 2500/13 ms; TI₁, 700 ms; TI₂, 1800 ms; a field of view, 25.6-cm; an imaging matrix, 64×64. The successive tag and control images were subtracted to produce a raw CBF map and added to produce a BOLD map [5] with a mapping rate of 2.5 s.


Data analysis- All images were transferred to a personal computer and registered to the first image with rigid-body transformation. After R_1 maps were estimated by fitting a 3-parameter model to the data of R series, the matrix size was reduced to 64×64. According to the R_1 values, white-matter ($R_1 > 0.86 \text{ s}^{-1}$) and gray-matter ($0.86 > R_1 > 0.62 \text{ s}^{-1}$) regions were segmented (Fig. 1). Raw CBF maps were multiplied by $\exp(r \cdot \text{PaO}_2 \cdot \text{TI}_2)$ to compensate for the effect of arterial-blood T_1 on ASL signals, where $r (= 1.5 \times 10^{-4} \text{ s}^{-1} \text{ per mmHg PaO}_2)$ is the relaxivity of arterial blood measured on the same 3T system with the above technique applied to the abdominal aorta. We assumed a linear model: $y = p_1 + p_2 t + p_3 \text{PaO}_2 + p_4 \text{PaCO}_2$ to fit the observed data, where y is R_1 , CBF, or BOLD-signal intensity, t is time, and p_{1-4} are parameters to be estimated. Especially p_3 is the coefficient that specifies the change in y per unit PaO₂. Relationship between the estimate of p_3 for R_1 (p_{3R1}) and that for CBF (p_{3CBF}) was analyzed.

Results: A typical result of the model fitting is shown in Fig. 2. The p_3 values are listed in Table 1. Because an artifact due to susceptibility of O₂ in the paranasal sinuses were noted on the BOLD maps, the regions of interest were confined to the posterior half of the segmented white and gray matter. The p_{3R1} for white matter was plotted against the p_{3CBF} in Fig. 3. No significant correlation was observed ($P = 0.18$).


Discussion: Changes in R_1 induced by hyperoxia may reflect changes in tissue pressure of O₂ (PtO₂). O₂ solubility in gray matter is 0.0013 mM per mmHg O₂ [6]. Relaxivity of dissolved O₂ in body tissue would be nearly equal to that in saline (0.13 s⁻¹ per mM dissolved O₂ at body temperature for 3 T, measured in our laboratory). Therefore, the relaxivity due to dissolved O₂ in the brain would be $1.7 \times 10^{-4} \text{ s}^{-1}$ per mmHg PtO₂. Meanwhile, venous O₂ (PvO₂) changes due to increases in PaO₂, which is a function of CBF/CMRO₂ ratio and blood hemoglobin concentration, is approximately 0.02 mmHg/mmHg PaO₂ as shown in Fig. 4. If the increase in PvO₂ is equal to that in PtO₂, brain tissue relaxivity would be $3.4 \times 10^{-6} \text{ s}^{-1}$ per mmHg PaO₂, which is 2-3 times smaller than the p_{3R1} in Table 1. Thus, changes in PtO₂ with hyperoxia might be 2-3 times larger than those in PvO₂. Moreover, no correlation between the p_{3R1} and p_{3CBF} (Fig. 3) might substantiate the report that CBF/CMRO₂ does not change during hyperoxia [7].

References: [1] Mills SJ, et al. *Proc ISMRM, Honolulu* 2009; p2746. [2] Bulte DP, et al. *JCBFM* 2007; 27:69-75. [3] Zaharchuk G, et al. *AJNR* 2008; 29:663-67. [4] Luh W-M, et al. *MRM* 1999; 41:1246-54. [5] Wong EC, et al. *NMR Biomed* 1997; 10:237-49. [6] Thews G. *Pfluegers Arch Gesamte Physiol Menschen Tiere* 1960; 271:197-226. [7] Xu F, et al. *Proc ISMRM, Stockholm* 2010; p1137.

Fig. 1: Segmented (a) white and (b) gray matter regions overlaid on a raw ASL image. The color scale indicates R_1 values.

Fig. 2: Model fitting to time-series R_1 . The red points are observed data; solid line, estimated model; dotted lines, estimated changes caused by O₂ and CO₂.

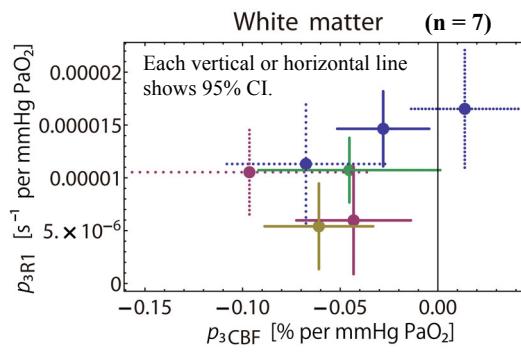


Fig. 4: Changes in PvO₂ when PaO₂ increases from 100 to 200 mmHg. The figure is obtained based on the equation of (arterial blood O₂ content) - (venous blood O₂ content) = CMRO₂/CBF.

Table 1: Estimated p_3 values (± interindividual sd, n = 7)

	White matter	Gray matter
BOLD (10 ⁻³ % per mmHg PaO ₂)	1.6±0.4	2.3±0.4
CBF (10 ⁻² % per mmHg PaO ₂)	-4.7±3.4	-2.8±2.1
R_1 (10 ⁻⁵ s ⁻¹ per mmHg PaO ₂)	1.1±0.4	1.2±0.4

Fig. 3: R_1 versus CBF response to hyperoxia.

