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Introduction 
Local canonical correlation analysis (CCA) is a novel data analysis technique, where instead of looking at the single voxel time course, the joint time courses of a group 
of neighboring voxels are investigated in a 3x3 in-plane pixel region[1,2]. The value of a suitable test statistic is used as a measure of activation. It is customary to 
assign the value to the center voxel. However, this choice can result in false activations especially in regions of localized strong activation. The reason for the increase 
in false activations close to localized strong activation is due to smoothing properties of CCA. In the following we refer to this artifact as “bleeding artifact”: This 
artifact can be reduced  by using spatial dominance constraints in CCA  (the larger the dominance, the smaller is this artifact). In the following we investigate if mixture 
modeling can be applied as a post-processing tool to eliminate the bleeding artifact for real fMRI data from a motor and a memory paradigm.  
Theory 
Let ߙ  specify the vector of the spatial weights of local CCA. We consider the following four scenarios for the components ߙ௜ of ߙ where ߙଵ is the weight for the center 
voxel and the other ߙ௜Ԣݏ represent the weights for the s neighborhood voxels. 
௜ߙ .#1 ൐ ଵߙ .2 #         ݅ ׊ 0 ൒ ଵ௦ିଵ ∑ ௜ୱ୧ୀଶߙ ൐ 0 and ߙ௜ ൐ ଵߙ .#3         ݅ ׊ 0 ൒ ∑ ௜ୱ୧ୀଶߙ ൐ 0 and ߙ௜ ൐ ଵߙ .#4     ݅ ׊ 0 ൒ maxሺߙ௜ሻ ൐ 0 and ߙ௜ ൐  .݅ ׊ 0
All of these constraints lead to spatial low pass filtering, and constraints #3 and #4 provide different magnitude of dominance of the center voxel (i.e. dominance for #3 
is maximum, for #4 is minimum; constraints #1 and #2 do not guarantee dominance). The bleeding artifact, ܤ஺, is defined as the probability that the center voxel of a 
configuration of size s (number of pixels in local neighborhood) is declared active given that the center voxel is not active, i.e. ܤ஺ ൌ ሺω݌ ൐ ω଴|center voxel is not activeሻ where ߱ is the test statistic of the configuration with inactive center voxel and ω଴ is a threshold (corresponding to p=0.05 
corrected). For multivariate methods this artifact is obviously a function of the analysis method applied, the CNR of the center voxel, the CNR of the whole 
configuration, the size of the configuration, and the statistical threshold employed. The bleeding artifact can be estimated  using re-sampled resting-state data as null 
data and adding simulated activations with specified CNR to all voxels of the configuration except the center voxel. With this procedure simulated voxel time courses ݕ௜ሺݐሻ for ݏ voxels in a 3x3 grid are obtained by  ݕ௜ሺݐሻ ൌ ቊ ݅ ሻ              forݐଵሺ଴ሻሺݕ ൌ ሻݐሺݔ ߚ1 ൅ ,ሻ      for ݅ ߳ሼ2ݐ௜ሺ଴ሻሺݕ … ,                             ሽݏ

where ݅ ൌ 1 refers to the center voxel and all other ݅ to the surrounding voxels of the configuration of size ݏ. All ݕ௜ሺ଴ሻሺݐሻ correspond to wavelet re-sampled resting-state 
time courses and represent spatially and temporally correlated null (noise) data. The activation is determined by the HRF regressor function ݔሺݐሻ of interest multiplied 
by factor ߚ so that the configuration has a given CNR. From simulated data, it is possible to determine the bleeding artifact function ܤ஺ሺ଴ሻ with ܤ஺ሺ଴ሻ ൌ ,ܯ஺ሺ଴ሻሺܤ ,ܴܰܥ  the size of the configuration, and ω଴ the statistical ݏ ,the CNR of the whole configuration ܴܰܥ ,labels the method of data analysis ܯ ω଴ሻ where,ݏ
threshold. The bleeding artifact in real data can then be estimated by ܤ஺ሺݔሻ ൌ ,ܯ஺ሺ଴ሻሺܤ ,ܴܰܥ  ሺx|center voxel is not activeሻ  where x is the CNR of the center݌ ω଴ሻ,ݏ
voxel. The second factor can be determined by density estimation techniques applied to activation data and null data. Specifically, using null data first, the density 
function of single voxel CNR is determined nonparametrically using kernel density estimation. This will give the pdf of ݂ሺݔሻ. For activation data we model the pdf as 
having a density ݄ሺݔሻ composed of ݂ሺݔሻ (with minor modification allowing for dilation) to represent the inactive voxels, and  a Gaussian density  ܩఓ,ఙሺݔሻ with mean ߤ 
and standard deviation ߪ to represent the active voxels. Then, ݄ሺݔሻ can be written as ݄ሺݔሻ ൌ ܽ ଵௗ ݂ ቀ௫ௗቁ ൅ ሺ1 െ ܽሻ ܩఓ,ఙሺݔሻ where the unknown parameters ܽ, ݀, ,ߤ  are ߪ
obtained by least square fitting.  Note that we incorporated a dilation parameter ݀ for the function ݂ሺݔሻ to allow for the fact that in activation data the distribution of the 
inactive voxels appears to have the same shape but is slightly broader than in null data. To correct for the bleeding artifact we propose the rule: Voxel is assigned to be 
null    ݂݅    ܤ஺ ൐ 0.5,  i.e. the measure of activation is assigned as zero if this statement is true. If this statement is not true, the measure of activation is unchanged. 
Methods 
FMRI was performed in a 3.0T GE MRI scanner (8-channel head coil, ASSET=2, TR/TE=2sec/30ms, FA= 70deg, FOV=22cmx22cm, thickness/gap=4mm/1mm, 25 
slices, resolution 96x96. We acquired three fMRI data sets. The first data set was collected during resting-state where the subject tried to relax and refrain from 
executing any overt task with eyes closed. The second data set was collected while the subject was performing an episodic memory paradigm. Briefly, this paradigm 
consisted of memorization of novel faces paired with occupation, containing 6 periods of encoding, distraction, and recognition  tasks (slices parallel to the long axis of 
hippocampus). The third data was obtained from a conventional motor task (axial slices, four 30 sec periods with on/off finger tapping). As local neighborhood for CCA 
we use every 3x3 in plane pixel patch and compute CCA for all 256 possible configurations involving the center voxel and its 8 neighbors. 
Results 
In Fig.1, we show the bleeding artifact function ܤ஺ሺ଴ሻሺܯ, ,ܴܰܥ  ω଴ሻ using simulated data for CNR=0 to 1 in steps of 0.1. Note that unconstrained CCA has severe,ݏ
bleeding artifacts, whereas CCA with the sum constraint (high dominance constraint) has almost no bleeding artifact. Fig.2 shows activation  maps obtained with 
different methods (A), activation maps corrected for the bleeding artifact (B), and the location of voxels that have significant bleeding artifact (C). Note that our 
proposed method to correct for the bleeding artifact is not limited to CCA but includes Gaussian spatial smoothing (GS) as well. Here we see that correction for the 
bleeding artifact leads to a separation of the left motor cortex into two activated  regions(see green arrows on the magnified regions of motor cortex in Fig.3, top row are 
uncorrected, bottom row are corrected for ܤ஺). This result is consistent with the activation pattern from single voxel analysis without Gaussian smoothing in Fig. 3, 
which does not contain any bleeding artifacts. Similar results are obtained for the memory data (not shown here). 
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