The Bleeding Artifact of Spatially Constrained Canonical Correlation Analysis in Functional MRI
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Introduction

Local canonical correlation analysis (CCA) is a novel data analysis technique, where instead of looking at the single voxel time course, the joint time courses of a group
of neighboring voxels are investigated in a 3x3 in-plane pixel region[1,2]. The value of a suitable test statistic is used as a measure of activation. It is customary to
assign the value to the center voxel. However, this choice can result in false activations especially in regions of localized strong activation. The reason for the increase
in false activations close to localized strong activation is due to smoothing properties of CCA. In the following we refer to this artifact as “bleeding artifact”: This
artifact can be reduced by using spatial dominance constraints in CCA (the larger the dominance, the smaller is this artifact). In the following we investigate if mixture
modeling can be applied as a post-processing tool to eliminate the bleeding artifact for real f{MRI data from a motor and a memory paradigm.

Theory

Let @ specify the vector of the spatial weights of local CCA. We consider the following four scenarios for the components a; of @ where a, is the weight for the center
voxel and the other a;'s represent the weights for the s neighborhood voxels.
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All of these constraints lead to spatial low pass filtering, and constraints #3 and #4 provide different magnitude of dominance of the center voxel (i.e. dominance for #3
is maximum, for #4 is minimum; constraints #1 and #2 do not guarantee dominance). The bleeding artifact, B, is defined as the probability that the center voxel of a
configuration of size s (number of pixels in local neighborhood) is declared active given that the center voxel is not active, i.e.
B, = p(o® > o, |center voxel is not active) where w is the test statistic of the configuration with inactive center voxel and ®, is a threshold (corresponding to p=0.05
corrected). For multivariate methods this artifact is obviously a function of the analysis method applied, the CNR of the center voxel, the CNR of the whole
configuration, the size of the configuration, and the statistical threshold employed. The bleeding artifact can be estimated using re-sampled resting-state data as null
data and adding simulated activations with specified CNR to all voxels of the configuration except the center voxel. With this procedure simulated voxel time courses

yl(o) ® fori=1
Bx()+ yi(o)(t) forief2, ..., s}
where i = 1 refers to the center voxel and all other i to the surrounding voxels of the configuration of size s. All yi(o) (t) correspond to wavelet re-sampled resting-state
time courses and represent spatially and temporally correlated null (noise) data. The activation is determined by the HRF regressor function x(t) of interest multiplied
by factor 8 so that the configuration has a given CNR. From simulated data, it is possible to determine the bleeding artifact function Bjo) with
B jo) = Bﬁo) (M, CNR, s, ®y) where M labels the method of data analysis, CNR the CNR of the whole configuration, s the size of the configuration, and ®, the statistical

threshold. The bleeding artifact in real data can then be estimated by B, (x) = B,§°) (M, CNR, s, ®,) p(x|center voxel is not active) where x is the CNR of the center
voxel. The second factor can be determined by density estimation techniques applied to activation data and null data. Specifically, using null data first, the density
function of single voxel CNR is determined nonparametrically using kernel density estimation. This will give the pdf of f(x). For activation data we model the pdf as
having a density h(x) composed of f(x) (with minor modification allowing for dilation) to represent the inactive voxels, and a Gaussian density G, ,(x) with mean u

v;(t) for s voxels in a 3x3 grid are obtained by y;(t) = {

and standard deviation o to represent the active voxels. Then, h(x) can be written as h(x) = a % f (g) + (1 — a) G, 5 (x) where the unknown parameters a, d, 4, o are
obtained by least square fitting. Note that we incorporated a dilation parameter d for the function f(x) to allow for the fact that in activation data the distribution of the
inactive voxels appears to have the same shape but is slightly broader than in null data. To correct for the bleeding artifact we propose the rule: Voxel is assigned to be
null if B, > 0.5, i.e. the measure of activation is assigned as zero if this statement is true. If this statement is not true, the measure of activation is unchanged.
Methods

FMRI was performed in a 3.0T GE MRI scanner (8-channel head coil, ASSET=2, TR/TE=2sec/30ms, FA= 70deg, FOV=22cmx22cm, thickness/gap=4mm/Imm, 25
slices, resolution 96x96. We acquired three fMRI data sets. The first data set was collected during resting-state where the subject tried to relax and refrain from
executing any overt task with eyes closed. The second data set was collected while the subject was performing an episodic memory paradigm. Briefly, this paradigm
consisted of memorization of novel faces paired with occupation, containing 6 periods of encoding, distraction, and recognition tasks (slices parallel to the long axis of
hippocampus). The third data was obtained from a conventional motor task (axial slices, four 30 sec periods with on/off finger tapping). As local neighborhood for CCA
we use every 3x3 in plane pixel patch and compute CCA for all 256 possible configurations involving the center voxel and its 8 neighbors.

Results

In Fig.1, we show the bleeding artifact function Bjo) (M, CNR, s, ®) using simulated data for CNR=0 to 1 in steps of 0.1. Note that unconstrained CCA has severe
bleeding artifacts, whereas CCA with the sum constraint (high dominance constraint) has almost no bleeding artifact. Fig.2 shows activation maps obtained with
different methods (A), activation maps corrected for the bleeding artifact (B), and the location of voxels that have significant bleeding artifact (C). Note that our
proposed method to correct for the bleeding artifact is not limited to CCA but includes Gaussian spatial smoothing (GS) as well. Here we see that correction for the
bleeding artifact leads to a separation of the left motor cortex into two activated regions(see green arrows on the magnified regions of motor cortex in Fig.3, top row are
uncorrected, bottom row are corrected for B,). This result is consistent with the activation pattern from single voxel analysis without Gaussian smoothing in Fig. 3,
which does not contain any bleeding artifacts. Similar results are obtained for the memory data (not shown here).
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