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Introduction 
Functional magnetic resonance imaging (fMRI) at ultra high fields facilitates new discoveries about brain function due to increased image signal-to-noise ratio and 

sensitivity to blood oxygenation level dependent (BOLD) signal changes [1].  However, a challenge with high field fMRI is the predominance of noise associated with 
physiological processes unrelated to the task of interest (e.g., respiration, cardiac motion/pulsatility, swallowing) [2].  This degradation in data quality may be reversed 
to some degree by using one or more post-acquisition algorithms designed to estimate and remove the effects of these noise sources.  Suppression of aperiodic 
fluctuations from speaking, swallowing, or abrupt movements may be achieved using the Stockwell transform filter [3,4].  If respiration and cardiac pulsatility are 
monitored using external equipment, then retrospective image correction (RETROICOR) may be used to suppress these quasi-periodic fluctuations [5].  Finally, if 
complex data are preserved, then phase regression may also be used for dual purposes of suppressing BOLD signals from large vessels [6] and other sources of noise 
exhibiting correlated changes in magnitude and phase [7].  Although these algorithms are pseudo-complementary, they have been validated in isolation using only 2D 
EPI data.  Thus, the goals of this work are to implement data-driven metrics to (1) validate the efficacy of Stockwell transform filtering (ST), complex phase regression 
(PR), and RETROICOR (RI) for use on 3D data and (2) investigate possible synergistic interactions between the sequential application of these algorithms at 7 Tesla. 
 

Methods 
Experiments were performed on a Philips 7T scanner with a quadrature transmit coil and 16-channel receive-only head coil.  Twelve volunteers (eight females) were 

studied under a protocol approved by the institutional review board.  The visual paradigm was a block design with four segments of 24 sec baseline (central fixation) 
and 24 sec activation (stationary 8 Hz flashing checkerboard wedge (22.5°) in the left visual field).  Slices (2 mm thick) were planned parallel to the calcarine sulcus.  
Four runs were acquired using two sequences (in alternating order): 2D EPI: TR = volume acquisition time (VAT) = 2000 ms, θ = 87°, 96 vols; 3D PRESTO [9-11]: TR 
= 22.22 ms, θ = 12°, VAT = 1 s, 192 vols; common parameters: k-space matrix = 96 x 96, voxel size = 2.19 x 2.19 x 2 mm3, TE = 28 ms, 12 slices, SENSE factor = 3.2. 

ST was implemented in Matlab as described in [4] with the modification that filtering was applied to both magnitude and phase data, PR was implemented in Matlab 
as described in [6], and RI was implemented using AFNI (afni_proc.py) [8].  These three steps were either applied or not applied, resulting in 23 = 8 combinations.  
Data from each combination were then spatially smoothed (SS) with one of three levels appropriate for group analyses (low (L) = 8 mm full-width-at-half-maximum 
(FWHM); medium (M) = 12 mm FWHM; high (H) = 16 mm FWHM), resulting in a total of 24 pipelines (12 magnitude-only and 12 using phase information).  Finally, 
data were transformed into MNI space (ICBM-152) with 2 x 2 x 2 mm3 voxels for group analyses. 

The quality of fMRI data was evaluated via metrics of prediction and reproducibility using 
NPAIRS† (Non-parametric Prediction, Activation, Influence and Reproducibility re-Sampling) 
[12,13].  Reproducibility (r ∈ [0,1]) measures the similarity (Pearson correlation coefficient) of 
activation maps generated from two independent data sets, and prediction (p ∈ [0,1]) evaluates the 
degree to which a trained model can assign correct class labels to an independent test set.  NPAIRS 
currently uses principal component (PC) analysis to reduce the dimensionality of the data followed by 
split-half resampling and canonical variate analysis.  Reported values for prediction and 
reproducibility are the median values across split-half samples for the range of PCs selected to jointly 
maximize prediction and reproducibility for each acquisition-processing pipeline. 
 

Results 
Figure 1 plots prediction vs. reproducibility for NPAIRS analyses of (A) 2D EPI data and (B) 3D 

PRESTO data, where noiseless fMRI data with a perfect model would be mapped to the point (1,1).  
Each ‘x’ represents a magnitude-only pipeline, and the ‘o’ of the same color and size represents that 
pipeline with PR.  The inclusion of PR decreased the Euclidean distance d from (p,r) to the ideal point 
at (1,1) in 11/12 pipelines for EPI and 6/12 pipelines for PRESTO.  Of the 6 pipelines where PR 
increased d, 4 were with SS=L, 1 with no processing and SS=M, and 1 with no processing and SS=H.  
For EPI data, the optimal preprocessing pipeline (i.e., minimum d ) was PR+RI with SS=H (d ≈ 0.22), 
and for PRESTO data the optimal pipeline was ST+PR+RI with SS=H (d ≈ 0.31). 
 

Discussion 
The results for EPI data (Fig. 1A, r ≈ 0.9) confirm a report [7] observing increased t-statistics when 

PR is included in the preprocessing pipeline.  The ST, RI, and ST+RI pipelines decreased d for all SS, 
showing that these algorithms are, as expected, effective in suppressing physiological noise in EPI 
data.  For PRESTO data (Fig. 1B), the RI and ST+RI pipelines decreased d for all SS; however, an 
interaction is observed as ST alone slightly increased d for SS=L and M, but decreased d for SS=L. 

This report explores the dependence of physiological noise suppression on a priori decisions that 
pertain to data acquisition.  If MR data are magnitude-only and physiological monitoring equipment is 
not used (or not available), then only 2 of these 8 pipelines (none, ST) may be used; if MR data are 
magnitude-only but physiological processes are monitored, then 4 pipelines are possible (none, ST, 
RI, ST+RI); if complex data are retained but physiological processes are not monitored, then 4 
pipelines are also possible (none, PR, ST, ST+PR); and only if both complex data are retained and 
physiological processes are monitored are all 8 pipelines possible.  The minimization of d with both 
PR and RI demonstrates the synergy between algorithms and the importance of retaining complex 
data and using physiological monitoring equipment to improve fMRI data quality.  Future work will 
investigate the SS interactions for PRESTO as well as explore possible explanations for differences 
(as per Fig. 1) in how these algorithms affect prediction and reproducibility in 2D and 3D data at 7T. 
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Fig. 1: Plots of prediction vs. reproducibility for data acquired with (A) 2D
EPI and (B) 3D PRESTO.  The processing pipeline represented by each
symbol is defined in the legend.  The SS kernel used is represented by the
size of the symbol (small=L, medium=M, large=H).  Each concentric dotted
curve is equidistant to perfect reproducibility and prediction at (1,1). 
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